Useful Gadgets: Winegard FlatWave AIR Amplified Outdoor TV Antenna

Winegard is one of the oldest names in the TV antenna business, having started up in 1954 as analog TV broadcasting was just getting out of the gate. Along the way, they’ve branched into satellite antennas, RV antennas, WiFi antennas, and a host of related accessories.

I’ve tested many Winegard antennas over the years, going back to traditional rooftop log-periodic UHF/VHF TV designs and more recently, super-flat indoor TV antennas (FlatWave) that have generally performed well.

The FlatWave AIR ($99), which I received recently for testing, is an updated version of an antenna I reviewed over 15 years ago that was intended for outdoor installation. It’s a large, box-like housing (14” x 14” x 4”) that clamps to a standard 1 ½” TV mast or a small angle bracket that can be fastened to a roof, the side of a house, or even a deck railing, as the company’s Web site shows.

Winegard’s FlatWave AIR amplified antenna is about as inconspicuous as you can get!

Some other product highlights from the Winegard Web site:

  • Meets Homeowners Association (HOA) Requirements for mounting outdoors (FCC Over-the-Air Reception Devices [“OTARD”] Rule of 1996)
  • Separately amplifies VHF and UHF signals to reduce intermodulation, thereby maintaining the purest signal path possible
  • Bandpass filters remove unwanted RF interference for unsurpassed performance
  • 10x more power handling capabilities than existing antennas

 

In my earlier review, I found the original design lacking when it came to reception of weaker TV stations that were in my “receivable” location, according to TVFool.com. That antenna had better performance on UHF channels than on VHF channels, and no wonder: The physical size of the antenna elements was too small in term of wavelength to pull in stations in channels 2-6, not to mention 7-13.

So what’s changed over the years? Not the outside design, although the mounting pipe is smaller and lighter. This time around, Winegard has added an inline amplifier to boost signal strength (hence the claim of “10x more power handling capabilities”). Does it make a difference? Read on, and find out.

The FlatWave AIR under test.

THE TEST

Back in early August, I tested several new outdoor TV antennas from Antennas Direct and compared them to older designs from over a decade ago. For this test, I replicated the setup I used then, with two 5’ mast sections on my deck to support the antenna and a Hauppauge Aero-M USB stuck receiver to pull in the stations.

Additional documentation and verification came via an AVCOM spectrum analyzer and TS Reader MPEG2 stream analyzing software. I considered the station to be successfully received if I was able to tune it in using TS Reader and it had a low Bit Error Rate (BER) with minimal dropped packets.

The antenna was aimed in two directions – south-southwest to pull in Philadelphia DTV stations from the Roxborough antenna farm, and north-northwest to pull in a handful of stations from the Allentown/Bethlehem area. I logged the MPEG streams from each station and also captured their 8VSB signal waveforms.

Nothing like sitting outside on a hot day and testing antennas!

THE RESULTS

There are plenty of VHF and UHF TV stations that should be easily receivable at my location. As the August test showed, I can pull in most of them with nothing more than a simple 3-element Yagi made from hardware store parts. The low-band and high-band VHF stations in my area can be a bit of a challenge with that approach, but even adding a simple dipole element solves the problem.

I identified 15 stations available in both test directions that should be receivable and two additional lower-power stations that some antennas might pull in. These channels cover all of the major networks – ABC, CBS, Fox, NBC, PBS, CW – plus some independent stations. All but one of these stations are multicasting at least one additional channel.

In my August test, none of the antennas pulled in fewer than 11 stations, and the weakest performer (ClearStream’s 2V) isn’t even sold anymore – it’s been replaced by the 2MAX, one of my stronger performers.

This table shows how the FlatWave AIR stacked up to some of the competition from August 2017.

The FlatWave AIR matched that score with 10 UHF stations and one VHF from Bethlehem when pointed towards Philadelphia. (WTXF’s repeater on channel 38 was only receivable to the northwest.) It did receive the two lower-power “bonus” stations, but so did just about every other antenna from the August test. What was particularly vexing was the inability to pull in WPVI’s very strong signal on channel 6, not to mention WHYY on channel 12 – two “must receive” channels in this market, as they are the ABC and PBS affiliates respectively and aren’t particularly difficult to receive.

Oddly, I did manage to pull in WPVI intermittently with the FlatWave AIR aimed 90 degrees away from the correct beam heading. That’s an indication of very low directivity and an antenna pattern that may have trouble rejecting interfering signals.

This spectrum analyzer screen shot shows one reason why I couldn’t receive WPVI: The noise floor was insanely high. (Forget about KJWP on channel 2!)

 

For comparison, here’s what the same spectrum looks like when using the ClearStream 2MAX antenna. Note the complete lack of spectral noise and the tall, clean carrier from WPVI. That mountain range to the right is made up of FM stations.

 

WHYY’s signal on channel 12 was also a no-go – it would come through intermittently and just as quickly disappear.

 

And here’s what WBPH-9 and WHYY-12 look like using the ClearStream 2MAX.

Another thing I saw with this antenna caused me a lot of concern, and that was tons of spectral noise from 56 to 88 MHz. That noise wiped out KJWP’s signal on channel 2 and another low-power station on channel 4, not to mention almost swallowing WPVI’s carrier on channel 6 entirely. I have no idea where it was coming from, but conventional Yagi antennas don’t see it at all – only loop antennas like the 2V have picked it up before. It’s also possible the noise is being generated in the amplifier, a problem I used to encounter with low-cost Radio Shack in-line RF amplifiers.

But the real design flaw with the FlatWave AIR is the lack of an active antenna element for low-band and high-band VHF TV reception, such as the ones found on the ClearStream 1MAX and 2MAX antennas. With the recent FCC TV channel auction complete, all channels above 36 are going away to be re-purposed for other services. Losing 15 channels means a lot of TV stations that were kicked off those channels will need to relocate, and many of them will wind up on low-band VHF assignments – the “low rent district” of broadcast operations.

That lack of low-band VHF reception means some viewers might not be able to pull in their favorite stations after channels have been repacked. Throw in a lot of man-made and natural spectral noise and interference, and you will have a lot of dissatisfied customers calling 1-800 numbers, or returning products to stores.

The FlatWave AIR is a decent performer on UHF channels. Here’s a few of the UHF spectrum from WPHL-17 (far left) to WFMZ-46 (far right). Just about every channel in this range came in cleanly.

CONCLUSION

If you live close to TV towers and there isn’t a lot of spectral noise in your area, the FlatWave Air may well do the job for you. By “close,” I mean within 10-15 miles with a line-of-sight path (my test location is 20+ miles away and blocked by two hills). UHF should be no problem; high-band VHF will probably work okay. But low-band VHF could be a challenge.

Winegard might want to consider an add-on kit for VHF reception that would be nothing more than a pair of screw-in or slide-in-and-lock rigid antenna elements. They shouldn’t detract much from the overall appearance of the antenna and would improve its performance noticeably. With channels 2-6 being resurrected from the grave, reliable reception of those channels will become a must-have.