Useful Gadgets: Antennas Direct ClearStream 2MAX and 4MAX Indoor/Outdoor TV Antennas

If you watch enough late-night television or independent local TV stations, you’ll eventually see an ad where George Forman, former heavyweight boxing champion, smiles at the camera and says, “People are always asking me: George, how do I patent my invention?”

Now, I’m pretty sure NO ONE has ever asked George Forman how to patent an invention, just as NO ONE has ever asked me for advice on how to become a championship boxer. On the other hand, I frequently get asked two questions – “What model of TV should I buy?” and “I want to drop cable TV. Can you recommend a good antenna?”

Lately, my answer to the first question is usually “Buy any TV you like. They’re so cheap now that you can just recycle it at the end of the year if you aren’t happy with it.” (I’m not being facetious: I just got a press release from RCA announcing a 50-inch Full HDTV with built-in Roku software for $499 and I’ve seen basic Ultra HDTV 50-inch sets from Hisense for less than that.)

My answer to the second question is a bit more measured. I need to know details before I can give out any practical advice. Do you want an indoor or outdoor antenna? How far do you live from the transmitter site(s)? What obstructions (hills, buildings, towers, etc) are near your home?

My most recent review of TV antennas focused on indoor models, which generally disappoint (with the exception of Mohu and Winegard). In most cases, my trusty $4.99 Radio Shack bow-tie antenna is more than adequate for that job, and if the signals are a bit weak, a low-noise, medium-gain amplifier fixes the problem. Granted; not a very sexy-looking antenna, but function always trumps form when it comes to pulling in TV stations.

A recent article in the Wall Street Journal details how Millennials seem astonished that “yes, Virginia; it is possible to watch television for free!” And all you need to do is (a) pick up some sort of TV antenna – yes, they still make those relics of the mid-20th century, (b) connect it to that threaded F-connector on the back of your TV set or pick up a USB tuner stick for your laptop, and (c) do a channel scan.

A few minutes later, you’re able to enjoy HDTV content from ABC, NBC, CBS, Fox, The CW, My TV, PBS, and other outlets. On secondary channels like Antenna, Comet, and Me TV, you can enjoy those great old black-and-white and color shows your parents and grandparents watched back in the day, like The Twilight Zone, Gunsmoke, Three’s Company, M.A.S.H. and The A-Team. And of course, your local news and weather (and emergency alerts) is always available, as are NFL games, the World Series, Stanley Cup playoffs, NBA Finals, Olympics, NASCAR and Indy Car racing  (I could go on and on….).

With an increasing number of people ditching expensive pay TV channel packages for fast broadband and video streaming (a/k/a “cutting the cord”); installing an antenna to pick up channels for free seems like a no-brainer. And you can happily ignore the occasional spat between your local cable TV provider and a major TV network over retransmission fees that usually results in a broadcast network channel being blacked out.

Plus, in case of severe weather, you have a Plan B if you lose landline telephone, cable TV, and broadband service. (It happens!) At which point the cellular phone networks get swamped and are often unusable. But you’re a cord-cutting smartie – pick up a battery-powered portable TV and you can stay in touch with weather updates. If you have a generator in your home (like I do), simply switch your TV to the antenna setting and you can continue watching while the utility crews struggle to remove fallen trees and re-string wires.

Ah, what better fun than to sit on your deck on a beautiful summer day and play with TV antennas!

THE CONTENDERS

Antennas Direct recently sent me review samples of their new ClearStream 2MAX (MSRP $79.99) and 4MAX (MSRP $149.99) indoor/outdoor TV antennas. (AD brands them as “HDTV antennas,” but that’s misleading marketing – HDTV is a picture format, not an RF transmission format. And some broadcast stations transmit standard definition TV on their sub-channels. (Hey, that UHF bow tie pulls in HD broadcasts, too!)

I’ve tested numerous ClearStream antennas in the past, and just for fun, I pulled a couple out of storage to use in this test for comparisons; the 1V and 2V (no longer offered). I also dug up one of Channel Master’Channel Master’s STEALTHtenna 50 models (MSRP $29.00) and added it to the pile, and to top things off, I included my home-brew ‘ugly duckling” 3-element UHF yagi antenna.

The ClearStream 2MAX antenna under test atop a 10-foot mast.

 

The ClearStream 4MAX struts its stuff.

 

Channel Master’s STEALTHtenna joins the fun…

 

…as did my 3-element “ugly duckling” compact UHF yagi antenna.

The 2MAX and 4MAX antennas are basically loop designs. They should exhibit broadband frequency response across the UHF TV band, although they’re too small to have much gain at low-band VHF (channels 2-6) and high-band VHF (channels 7-13) frequencies. That’s where the single dipole element comes in – it works better for channels 7-13, but is still a bit small for reception of 2 through 6.

Channel Master’s STEALTHtenna is more of a directional design as it is a six-element yagi for high-band VHF and UHF. CM claims 9 dB gain on UHF and 6 dB gain on VHF, compared to the published gain specifications of 2.6 dB on VHF and 8.7 dB on UHF for the 2MAX and 2.5 dB on VHF and 11 dB on UHF for the 4MAX. The low VHF gain figures for the 2MAX and 4MAX are precisely because a single dipole element is being used for VHF – and it has a figure-8 reception pattern front and back.

I’ve never calculated the gain of my ‘ugly duckling’ 3-element UHF antenna, but it would be at least 6 dB since it is directional, but has a wide (75-degree) antenna pattern. Still, it is a useful benchmark for basic TV reception and works surprisingly well, with a full-wave loop driven element resonant around 600 MHz and an aluminum-screen reflector.

Each antenna was placed atop this 10-foot mast and aimed in two directions for the test.

 

Each antenna was tested with and without the ClearStream Juice mast-mounted preamplifier. (Well, the mast was only 15 feet away from the test equipment…)

 

Hauppauge’s WinTV Aero-M USB stick receiver, TS Reader software, and a spectrum analyzer performed the critical measurements.

THE TEST

The weather on test day was spectacular – it had dropped into the high 50s the night before and a tropospheric weather duct was present, bringing in strong UHF TV signals from Scranton/Wilkes-Barre PA; over 70 miles to the north. The signals from WVIA-41, WOLF-45, and WNEP-50 were so strong I could pick them up with the 3-element UHF yagi with no amplification! As the morning wore on and the air heated up, the duct quickly disappeared.

I set up everything on my rear deck with two 5-foot Radio Shack mast sections siting in a tripod mount holding up each test antenna. I aimed it north-northwest to pull in stations from Allentown/Bethlehem PA (about 25 miles away) and south-southwest to pull in Philadelphia stations (over 20 miles away with some obstructions). Each antenna was tested with and without a preamplifier (ClearStream Juice, $79.99) to try and pull in a pair of low-band VHF channels (KJWP-2 and WPVI-6), two high-band VHF channels (WBPH-9 and WHYY-12), and a host of UHF stations.

I captured the spectral views for each antenna/amplifier combination and used TS Reader software to decode the MPEG transport stream and verify reception through a Hauppauge Aero-M USB tuner stick. If the station locked up quickly with a low or zero bit error rate (BER), then I checked it off as received. If I saw tiling on the image or a high BER, then reception was considered unsuccessful. I also tuned in selected signals to watch the content and verify reception.

While UHF reception for smaller antennas is generally easy, there are some lower-power stations in Philly that don’t always show up in a channel scan, so I gave bonus points for pulling in two of these stations (WTVE-25 and WGTW-27). I was also very interested to see how each antenna performed with low-band VHF channels – a part of the spectrum that’s particularly susceptible to atmospheric and man –made noise, especially with indoor antennas.

Here’s what the Philadelphia UHF TV spectrum looked like using the ‘ugly duckling’ 3-element UHF yagi with amplification.

 

The same spectral view as seen with the Channel Master STEALTHtenna and amplifier…

 

…the ClearStream 2MAX antenna with amplification…

 

…and the ClearStream 4MAX antenna with amplification.

 

Just for fun, here’s the UHF spectral view captured with the discontinued ClearStream 1V through an amplifier. If you’re not seeing a big difference in performance across the commercial antennas, welcome to the club.

In general, the easiest signals to capture came from WPVI-6, WBPH-9, WPHL-17, KYW-26, WCAU-34, WYBE-35, WLVT-39, and WFMZ-46 (that last one runs over 5 million watts ERP). KJWP-2, WUVP-29, and WTXF-42 can all be problematic, as are the two lower-power stations mentioned earlier. In addition, WTXF has a repeater in channel 38 in the Lehigh Valley, so I checked for that one as well.

Why’d I test with the Juice preamplifier? The 8VSB transmission system used for digital television in the U.S. has a theoretical minimum carrier-to-noise ratio of 15 dB – but that’s in a perfect environment. In the real world, signal reflections and distortion make it harder for the adaptive equalizers in an 8VSB receiver to pull in a DTV broadcast.

Amplifying the signal at the antenna (not at the TV) boosts the overall C/N ratio and makes it easier for the equalizers to do their jobs. Plus, it provides access to more distant signals: With a 5-element high-band VHF yagi and Channel Master mast-mounted low-noise preamp, I can watch New York City DTV stations that are over 60 miles away – through two ranges of hills.

THE RESULTS

Table 1 shows the final results for each antenna running ‘barefoot’ – no amplifier. Each antenna gave a good accounting of itself with the 4MAX taking top honors, pulling in 13 stations. Oddly enough, the discontinued 2V grabbed WTVE-25 for a bonus, but still was good for only 11 stations. The ‘ugly duckling’ did about as well as expected since it has zero gain at VHF frequencies, pulling in 7 UHF stations while Channel Master’s STEALTHtenna grabbed just one more.

Table 1. Comparative performance of all antennas without amplification.

 

A real head-scratcher? The ClearStream 1V (discontinued) came up just one channel short to the 4MAX and out-performed the 2MAX (9 channels) and 2V (11 channels). Go figure! Of course, the 1V and 2V have mesh screen reflectors, giving the antennas some degree of directivity over the 2MAX and 4MAX.

Table 2 shows what happened when a Juice preamplifier was inserted inline, leveling the playing field.  The ‘ugly duckling’ UHF yagi captured 1 VHF and 11 UHF signals – not bad. That tied it with the 1V loop antenna, edging out the larger 2V dual-loop by one station although both of the older ‘loopers’ found the bonus stations. The amplified 2MAX managed to sniff out 14 stations plus two bonus stations for a grand total of 16, tying the amplified 4MAX (it couldn’t pull in WTVE-25).

Table 2. Comparative performance of all antennas using the Juice preamplifier.

 

But the overall winner in this category was the $29 STEALTHtenna, receiving every possible station in the table including the two bonus channels for a grand total of 17 stations. It tied the 4MAX on the 15 ‘core’ VHF and UHF channels, too. Just goes to show you that a good antenna design doesn’t need to cost an arm and a leg – you could buy 5 STEALTHtennas for the cost of one 4MAX. (Actually, you could buy two STEALTHtennas; mount them on a mast a half-wavelength apart, and run them into a combiner and mast-mounted preamp to add gain to your system.)

KJWP-2 and WPVI-6 as received by the Channel Master STEALTHtenna using amplification. This setup worked very well in the noisy low-band VHF spectrum.

 

The same channels as seen by the 2MAX antenna with amplification…

 

…and the 4MAX antenna with amplification.

 

The discontinued ClearStream 2V might have been a strong performer on UHF channels, but it’s overwhelmed with noise on low-band VHF channels.

 

To be fair, a difference of one station either way doesn’t really define a “winner” and a “loser” in this test. I might easily have had different results if I moved antennas to either side or changed their elevation. (That’s why each antenna was tested in the exact same location.) I will say that based on my results, I’m not sure you’d need to upgrade to the 4MAX for an additional $70 over the 2MAX – there was a 4-channel difference when both antennas were unamplified, but they tied with the Juice in line.

That’s a lot of extra dough for not much difference in performance, and if you live more than 20 miles from your local TV transmitters the money would be better spent on a mast-mounted preamplifier – especially if you plan to distribute signals to more than one TV through splitters (a two-way splitter will drop signal levels by about 3.5 dB at each port.).