Posts Tagged ‘Samsung’

Samsung Moves Front & Center With HDR

Last Wednesday, I was one of a group of journalists, engineers, and other technical types sitting in on a presentation about high dynamic range (HDR) TV. The location was Samsung’s sparkling-new product showcase in lower Manhattan at 837 Washington Street, and the presenters ranged from Samsung execs to well-known industry consultants, including Florian Friedrich of AVTOP, Steve Panosian of Samsung, Kevin Miller from ISF, Gerard Catapano from Samsung QA Labs, and Jason Hartlove of Nanosys.

THE NEXT BIG THING

You’d have to be living under a rock not to have heard about high dynamic range television by now. Along with Ultra HD resolution, HDR is the next big thing in TV displays, along with a new, wider color gamut, and eventually high frame rate video.

The transition away from mature Full HD (1920×1080) display technology to Ultra HD is happening much faster than most people expected. The costs of manufacturing LCD panels for televisions have absolutely plummeted in the past couple of years; so much that there is at best a $50 to $100 price delta between same-size 1080p and 2160p TV models.

In fact, we will start to see major TV brands dropping 1080p models altogether in larger screen sizes; possibly as soon as December. Sales experience is showing that customers take the upgrade to 4K more often than not when buying sets measuring 55 inches or larger, which is good news for retailers.

And that’s “qualified” good news, as worldwide sales of televisions have been in decline the past four years. The double-digit annual growth of Ultra HDTV sales are keeping things from getting worse and leading everyone in Japan, Korea, and China to focus on 4K and leave increasing numbers of sales of 1080p sets to the bargain brands.

But quadrupling the picture resolution by itself isn’t enough to turn the tide. Hence, we now have HDR, which can produce images containing peak brightness levels that are 10x higher than what we used to see on our old tube HDTVs. (Remember those?) And the colors represented on these displays are also much more saturated and intense, thanks to advancements in illumination technology.

Back in the early days of high definition television, we were largely in unknown territory. The first HDTV broadcasts used terrestrial television, and everyone needed to learn more about antennas and set-top boxes. Yet, seven years after the first HDTV broadcasts, every major network had produced some quantity of HDTV content.

There were missteps. Remember the surge in interest in 3D about a decade ago? It peaked in 2009 and featured competing 3D encoding and viewing standards, expensive glasses that often broke, complaints of headaches and nausea after extended, and even a campaign by the American Academy of Ophthalmologists to test for eye disorders; one based on the inability of certain people to see stereoscopic images correctly.

TIME TO CHANGE THINGS UP

Gerard Catapano from Samsung and Chris Chinnock of Insight Media talk about UHDTV market trends.

Gerard Catapano from Samsung and Chris Chinnock of Insight Media talk about UHDTV market trends.

HDR is different. You don’t need anything other than the naked eye to see it, and the premise of HDR is that you are watching images with peak whites and contrast ratios that follow closely what you see in real life (about 14 stops of light at any instant, from deep shadows to peak brightness).

What’s more, the colors you see rendered in HDR are much more vivid than what our current televisions can display as they’re working with a restricted color gamut. If you’ve seen bright neon or LED signs at night, marveled at a brilliant sunset, or gotten up close to tropical flowers in bloom, you know how hard it is to reproduce those intense colors on a television or computer monitor.

That’s all changed. We’re now standing at the threshold of an entirely different class of displays that are advanced by several orders of magnitude from the color TVs your parents or grandparents watched 50 years ago. It isn’t just about having more pixels – it’s about adding in all of the visual elements that replicate what you see every day.

Samsung's KS98900 HDR TV, as seen last April at Samsung's 837 Washington Street showroom. It uses quantum dots manufactured by Nanosys.

Samsung’s KS9800 HDR TV, as seen last April at Samsung’s 837 Washington Street showroom. It uses quantum dots manufactured by Nanosys.

Samsung is one of the first companies to get out of the gate with HDR televisions, and they’re using a new technology to light up the screen. Instead of conventional white light-emitting diodes (LEDs) and arrays of color filters, the light source is made up of arrays of blue LEDs and matrices of green and red quantum dots (QDs). It’s not difficult to get intensely-saturated and bright blues from LEDs, but green and red provide more of a challenge. Hence; the QD backlight.

And they are bright. Samsung claims that their HDR TVs can achieve 1000 candelas per square meter (cd/m2) in a small area, which is quite the jump from the 300 cd/m2 or so that conventional white LED backlights can generate. Plus, the intense greens and reds generated by QDs have expanded the gamut of displayable colors considerably; closer to that of digital cinema projectors.

Now, the catch: How can we measure the performance of an HDR TV equipped with quantum dots? We can’t use the older test pattern generators and set-up Blu-ray discs as they’re limited to the current ITU Recommendation BT.709 color space and only use 8-bit color encoding. (HDR is based on a 10-bit color system.)

For that matter, we can’t even use the older display interfaces to connect a test pattern generator. For HDMI, the standard must be version 2.0a, and if we want to use DisplayPort, it must be version 1.4. It goes without saying that we must use an Ultra HD Blu-ray player if we want to source HDR test patterns from optical disc – and there is exactly one of those (Samsung) on the market, with another one coming from Panasonic this fall.

Florian Friedrich and Kevin Miller discuss the challenges of evaluating and calibrating HDR TVs.

Florian Friedrich and Kevin Miller discuss the challenges of evaluating and calibrating HDR TVs.

At the Samsung event, Friedrich and Miller explained how a new suite of test patterns has been prepared for Ultra HD Blu-ray to both evaluate and calibrate an HDR display. This test pattern UHD BD will be available from Samsung and can be used with any HDR TV, even the line-up of LG organic light-emitting diode (OLED) UHD sets that have come to market.

Steve Panosian talked about the lack of standards in TV performance and how there has to be a better way for consumers to compare the performance of one brand of HDR TVs against another. Although at this point in time, there are so few models available that it’s basically Samsung vs. LG, with companies like TCL and Hisense looking to get into the game this year.

Jason Hartlove from Nanosys made an appearance to talk about what’s happening with quantum dot science and what the next generation of HDR TVs might look like as the QD arrays in Ultra HDTVs start to resemble something like an OLED emitter array. And Chris Chinnock of Insight Media served as moderator for the day’s events, which culminated in hands-on sessions showing how to use the test pattern UHD Blu-ray to evaluate a set’s performance and calibrate it for optimal results.

The panel weighs in on the current state of HDR in consumer displays.

The panel weighs in on the current state of HDR in consumer displays.

The interesting thing about HDR TVs is that we really don’t need to provide much in the way of user adjustments anymore. HDR TVs use CEA 861.3 metadata, flowing through an HDMI or DisplayPort connection, to determine brightness levels, gamma, and color values.  And with peak brightness values in the range of 800 – 1000 cd/m2, why would we need to have a “Dynamic” picture mode setting? (It’s already dynamic!)

Although I had seen this demonstration on two previous occasions, Insight Media and Samsung did an excellent job of explaining the challenges in both designing a set of test patterns to evaluate HDR TV performance and putting those patterns to actual use. I was reminded of those early days of HDTV: What signal format and connector do I need? What kind of antenna will pick up the broadcasts, and where do I aim it? What’s the difference between 720p, 1080i, and 1080p?

THE NEXT STEPS

My advice to everyone remains unchanged, however. If you are in the market for a new Ultra HDTV with HDR, I would hold off on purchasing it until at least January, if not next spring. By then, there should be several models supporting more than one HDR format (the baseline being HDR 10, but there are at least four others developed by Dolby, Technicolor, Samsung, and the BBC).

More importantly, your UHD set should support not only HDR content flowing through a display connection, but over an Internet connection. More and more content delivery is switching to video streaming as we move away from physical media. Plus, you’ll certainly spend less money on an HDR set if you can sit on your hands for a while, and there may even be a few more UHD Blu-ray player models to choose from six months from now, along with a lot more movies mastered in HDR.

As The World Turns: Vizio Is Acquired by LeEco

A press release crossed my desk yesterday, detailing how the TV brand Vizio had just been acquired by the Chinese firm LeEco for $2B. LeEco, while largely unknown on this side of the Pacific, is the 7th largest TV brand in China and also operates an online video content delivery business.

It’s expected that the combined operations of both companies will push them past Skyworth as the #6 worldwide TV brand, according to analysis from IHS Technology I just received this morning. (Never heard of Skyworth? Give it time.)

Vizio, which started operations over a decade ago, has become a powerhouse brand in the U.S. Although they don’t release their revenue and market share results, the company has given Samsung a run for their money over the years with a full line of televisions, most recently taking steps into HDR and UHDTV with Dolby Vision-equipped sets.

Yet, not everything the company has touched has turned to gold. There have been brief forays into smartphones (gone), tablets (gone), and computers (also gone.) In contrast, the company has done very well with sound bars, which all flat-screen TVs benefit from.

This news didn’t surprise me at all. The TV marketplace has become a very cutthroat business as prices and profits went into free fall, aided and abetted by competition from China where the nexus of LCD panel manufacturing is moving.

Numerous prominent nameplates have been victims of this downward trend, starting with Hitachi several years ago and continuing through Mitsubishi, Toshiba, and Sharp; all of whom have withdrawn from the North American TV market. (Hisense continues to sell televisions with the Sharp brand name in the U.S. and Canada.)

Panasonic, once a major player in TVs, is in the unusual position of offering an Ultra HD Blu-ray player (DMP-UBD900, $699) this fall, but no UHD televisions to bundle it with. For now, the company is not selling TVs at retail in the U.S. even though it demonstrated a 65-inch OLED UHDTV at CES that used an LG RGBW OLED panel.

Only Sony remains as a Japanese TV brand, and they’ve paid a dear price to stay in the game, losing hundreds of millions of dollars for a decade.  Samsung and LG, meanwhile, have maintained their positions in the Top 5 even as worldwide TV shipments have gone into decline by an average of 3-4% per year, offset somewhat by double-digit growth in UHDTV shipments.

What’s interesting about LeEco is that, according to the HIS analysis, they’re willing to sell TVs at or below manufacturing costs – or even give them away free as a promotion – to secure paid subscriptions to their online content in China. That’s not a model that is likely to work here, but it does indicate how aggressive the new LeEco / Vizio marketing approach could be here and overseas.

Checking this weekend’s sales fliers, I spotted a Vizio 50-inch “smart” Ultra HDTV with HDR for $800 and a 70-inch model for about $2,000; both at Best Buy. Connect the dots and you can see why TV prices continue to fall, and why the bulk of TV sales are transitioning from 1080p to Ultra HD in a hurry.

Sharp (again, now made and marketed by Hisense) did Vizio one better this week, offering a 55-inch Ultra HD set for $650 (no HDR). We’re not far off from seeing $500 55-inch Ultra HDTVs, which will probably be on store shelves in time for the fall football season and certainly by Christmas.

Vizio’s conversion to a publicly-held company a year ago set the stage for this sale and is more proof of the shift in power to China for manufacturing and sales of televisions – at least worldwide. Will TCL and Hisense make further inroads to the U.S. market? What impact will they have (if any) on Vizio’s market share?

Stay tuned…

NAB 2016: Thoughts and Afterthoughts

I’m back from my 22nd consecutive NAB Show, and it’s always a worthwhile trip. NAB isn’t quite as large or crazy as CES, but it’s still sprawled out enough to require three full days to see everything. (Except that you don’t have to fight the insane crowds that fill the Las Vegas Convention Center in January.)

This year’s theme was “Unleash!” or something like that. I never was completely sure, and it sounded more appropriate for a competition of hunting dogs anyway. But the crowds came anyway (over 100,000 for sure) to see everything from 4K and 8K video to live demonstrations of the new ATSC 3.0 digital broadcasting system, a plethora of small 4K cameras, the accelerating move to IP infrastructures instead of SDI, and video streaming to every conceivable device.

My visit to the show had a threefold purpose. In addition to press coverage and checking out product trends for customers, I also delivered a presentation during the Broadcast Engineering Conference titled “Next Generation Interfaces: Progress, or Babylon?” The subject was a new wave of high-speed interfaces needed to connect 4K, 5K, 6K, and 8K displays (DisplayPort, HDMI 2.0, and superMHL, not to mention Display Stream Compression).

Besides hundreds of exhibits, there are the pavilions. Trade shows LOVE setting up pavilions to showcase a hot technology or trend. Sometimes they’re a bit premature: In 1999, the show featured an enormous “streaming media” area in the central hall of the Las Vegas Convention Center stuffed full of startup companies showing postage-stamp-sized video, streaming over DSL and dial-up connections. All of those companies were gone a year later.

In addition to the Futures Park pavilion – which showcased NHK’s 8K broadcasting efforts and ATSC 3.0, and which was mysteriously stuffed all the way at the back (east) end of the upper south hall, where few people rarely go – there was the Sprockit startup pavilion in the north hall, near the Virtual Reality / Augmented Reality pavilion (more on that in a moment).

This setup was useed to capture HDR and SDR images of the model, stream them to the roof, and link via 18 GHz microwave to Black Mountain...

This setup was used to capture HDR and SDR images of the model, stream them to the roof, and link via 18 GHz microwave to Black Mountain…

 

...where the images where coded as HEVC H.265 4K signals and broadcast on UHF channel 50, back to the convention center. (Introducing about 14 seconds of latency along the way...)

…where the images were coded as HEVC H.265 4K signals and broadcast on UHF channel 50, back to the convention center. (Introducing about 14 seconds of latency along the way…)

There was also a demonstration of ATSC 3.0 in the home, located at the upper entrance (west end) of the south hall. Outside, Nokia set up a concert stage and had entertainment each day, all day long, streaming the performances into the VR/AR booth for viewing and listening on appropriate headgear.

To set the table and see just how much the industry has changed in a little over 20 years, the “hot” broadcasting formats in 1995 were Digital Betacam (two years old), DVCPRO, and a new HD format called D5. Non-linear editing was just getting off the ground from the likes of Avid, Media 100, and Boxx Technologies. A decent SD camera for studio and field production cost about $20,000, and HD was still very much in the experimental stage – the new Grand Alliance HD format was heavily promoting the format, model station WHD in Washington was conducting trial broadcasts, and there was no such thing as 720p/60/59.94 just yet.

The standard connectors for video? BNC and RCA for composite, with BNC doubling for the serial digital interface (SDI) connection. VGA was the connector of choice for PCs, and component video was tricky to implement. Tape was the preferred recording media, as optical disc hadn’t made its public debut yet. “High resolution” on a graphics workstation was around 1280×1024 (SXGA), a “bright” LCD projector could crank out about 500 lumens with 640×480 resolution, and the Internet was still a mystery to 90% of attendees.

We all know how the intervening years played out. TV broadcasters are now in the middle of a channel auction, and we may lose more UHF spectrum (in 1995, UHF channels ran from 14 to 69), possibly as much as 60 – 80+ MHz, or 10 – 14 channels. Demand for optical disc media is very much on the wane as streaming and cloud services are picking up the reins.

You don’t see very many transmitter and antenna manufacturers at the show any more, and when you do, their booths are pretty small. There’s been consolidation in the industry with antenna maker Dielectric shutting down a few years ago, then getting bought by the Sinclair Broadcast Group and revived (just in time for the auction!). Harmonic recently purchased Thomson, which explains the big empty booth where they should have been.

Z3's DME-10 is a super-tiny H.264 encoder for IP streaming.

Z3’s DME-10 is a super-tiny H.264 encoder for IP streaming.

 

Vitec's H.264 encoders aren't much bigger!

Vitec’s H.264 encoders aren’t much bigger!

And the biggest booth at the show doesn’t belong to Sony, or Panasonic, or Imagine (Harris). Nope, that honor goes to Canon, showing you that there’s still plenty of money to be made in video and still cameras, optical glass, and camera sensors. In a sign o’ the times, Panasonic’s once-enormous booth, which occupied the full width of the central hall mezzanine, has shrunk down to about half its original size.

NAB now is all about “anytime, anywhere” content creation, mastering, storage, and delivery. The concept of broadcasting is almost quaint these days (ATSC 3.0 notwithstanding) as more and more viewers avail themselves of faster broadband speeds and opt for on-demand streaming and binge viewing of TV shows.

Brands like Netflix and Amazon are stirring the pot, not ABC and NBC. (Most of the TV shows in the top 20 every week are CBS programs.) YouTube now offers a premium ad-free service (ironic, since ten years ago it was a place to share videos commercial-free). And this year’s “3D” is virtual reality (VR), backed up by augmented reality (AR).

Nokia's VR camera has 8 super-wide-angle lenses and 8 microphones. And I'm sorry, it DOES look like a high-tech hair dryer...

Nokia’s VR camera has 8 super-wide-angle lenses and 8 microphones. And I’m sorry, it DOES look like a high-tech hair dryer…

 

That is a lot of stuff to put on your head just so you can escape reality, isn't it?

That is a lot of stuff to put on your head just so you can escape reality, isn’t it?

Not clear on the difference? VR presents a totally electronic “pseudo” view of the world, which can be represented by custom video clips or generated by computer graphics. AR takes real-world views and overlays text, graphics, and other picture elements to “augment” your experience.

Google Glass is a good example of augmented reality – you’d walk down the street and graphics would appear in the near-to-eye display, showing you the location of a restaurant, displaying a text message, or alerting you to a phone call. Oculus Rift and Samsung Galaxy Gear are good examples of virtual reality, immersing your eyes and ears in imaginary worlds with large headsets and earphones.

I’ve tried VR and AR systems a few times, and the eyewear works- but it’s heavy and quite bulky. And the multichannel spatial audio is also impressive, but I have to strap headphones over those enormous headsets. In fact, the biggest problem with VR and AR right now IS the headset.  Galaxy Gear and other systems use your smartphone as a stereo display (you can do the same thing with a simple cardboard viewer), but the resolution of your smartphone’s display simply isn’t fine enough to work in a near-to-eye application.

After you wear a VR/AR headset for a while and stand up and take it off, you may find your sense of balance is also out of whack and that you momentarily have some trouble walking correctly. That’s another example of a spatial disorientation problem caused by the disconnect between your eyesight and other senses.

If some of these problems sound familiar, they should. We heard much the same thing during the latest incarnation of 3D from 2008 to 2012, particularly from people wearing active-shutter 3D glasses. During the roll-out of 3D, it became apparent that as much as 25% of the general population could not view 3D correctly because of eye disorders, spatial disorientation, incompatibility with contact lenses, and other problems.

Boland's selling the 55-inch LG Display RGBW 4K OLED as a broadcast monitor.

Boland’s selling the 55-inch LG Display RGBW 4K OLED as a broadcast monitor.

 

Fusion is selling the same monitor as a

Fusion is selling the same monitor as a “reference” broadcast monitor and multiviewer. (Sony’s got it, too!)

Back to reality! Here are a few more interesting things I saw in Las Vegas:

ATSC 3.0 is ready for its day in the sun. A consortium of interest groups recently petitioned the FCC to make that happen, and based on the demos at the show, it has a fighting chance to ensure broadcasting sticks around for a while. For current TVs, some sort of sidecar box will be required. But you’ll be able to watch 4K (Ultra HD) broadcasts with spatial audio and stream broadcast content to phones, tablets, and laptops, too.

8K Real-Time HEVC Encoding was on display in the NTT and NEC booths. For those counting, there are 7680 horizontal and 4320 vertical pixels in one 8K image, and both companies had demos of 4:2:0 video streaming at about 80 Mb/s. Recall that 8K has 16 times the resolution of 1080p full HD, and you can see that a ton of computational power is required to make it all work.

HEVC Encoding was also in abundance on the show floor. Vitec had some super-small contribution H.265 encoders, and Haivision brought out a new Makito H.265 portable encoder. The Fraunhofer Institute had an impressive demo of contribution 4K video with HDR and wide color gamut encoded at 16 Mb/s, resulting in picture quality that would rival an Ultra HD Blu-ray disc streaming six times as fast.

The Fraunhofer Institute demonstrated 4K video with HDR and wide color gamut at an amazingly low 16 Mb/s. Image quality was spectacular (and yes, they did encode pieces of falling glitter in the video!).

The Fraunhofer Institute demonstrated 4K video with HDR and wide color gamut at an amazingly low 16 Mb/s. Image quality was spectacular (and yes, they did encode pieces of falling glitter in the video!).

 

Samsung will make its dynamic tone mapping scheme for HDR available to anyone who wants to use it - and has submitted it to SMPTE as a candidate HDR format.

Samsung will make its dynamic tone mapping scheme for HDR available to anyone who wants to use it – and has submitted it to SMPTE as a candidate HDR format.

 

Technicolor demonstrated their

Technicolor demonstrated their “HDR interpolated from SDR” process, and it works better than I expected.

Organic Light-Emitting Diode (OLED) displays are gaining ground on LCD for studio and broadcast operations. Three different companies – Boland, Sony, and Fusion – were showing Ultra HD “client” and “reference” monitors based on a 55-inch RGBW panel manufactured by LG Display. Sony, of course, has 30-inch and 25-inch models, and some of the older 25-inch glass is being used in monitors made by companies like Flanders Scientific. Newer OLED panels use 10-bit drivers and can reproduce HDR signals with a wide color gamut.

High Dynamic Range was very much on people’s minds at NAB 2016. Dolby showed its Dolby Vision proprietary HDR system, and Technicolor privately demoed its dual SDR/HDR workflow and distribution scheme. Samsung was an expected visitor to the show floor – their booth featured a side-by-side comparison of SDR and HDR with dynamic tone mapping, a system they invented and will make available openly to anyone. It’s also a candidate for SMPTE HDR standards.

Super-fine pitch LED display walls are the next big thing, and I mean that – literally. Leyard, who bought Planar Systems last year, had an impressive 100-foot diagonal “8K’ LED video wall (no mention of the dot pitch, but it had to be around 1.2mm) that dominated the floor. An industry colleague remarked that the brightness and size of this screen would be sufficient to replace cinema screens and overcome reflective, contrast lowering glare. (Plus kick the electric bill up quite a few notches!)

Leyard also had a prototype 4K LED display wall using .9mm dot pitch LED emitters and not far away, Christie showed its Velvet series of LED walls, with dot pitches ranging from as coarse as 4mm (remember when that used to be a fine pitch?) to as sharp as .9mm. Top= put all of that into perspective, the first 42-inch and 50-inch plasma monitors that entered the U.S. market in the mid-1990s had a dot pitch of about 1mm, and 720p/768p plasma monitors were about .85mm. How far we’ve come!

Words don't express how spectacular Leyard/Planar's 100-foot 8K LED wall looked. You had to be there. (Next-generation cinema screens, anyone?)

Words don’t express how spectacular Leyard/Planar’s 100-foot 8K LED wall looked. You had to be there. (Next-generation cinema screens, anyone?)

 

Panasonic had a cool 8K

Panasonic had a cool 8K “solution,” consisting of a 55-inch 8K IPS monitor and recorder/player. Still thinking about which 4K gear to buy? Get with the program!

 

NEC and NTT both showed real-time 8K encoding using HEVC H.265. (Have we moved past 4K already? Wow...)

NEC and NTT both showed real-time 8K encoding using HEVC H.265. (Have we moved past 4K already? Wow…)

 

For just $2,000, this box will let you copy HEVC H.265 2K and 4K video to as many as 25 SD cards at once. How do they do it?

For just $2,000, this box will let you copy HEVC H.265 2K and 4K video to as many as 25 SD cards at once. How do they do it?

And there’s still very much a place for AVC H.264 encoding. Z3 had a super-tiny DME-10 H.264 encoder for streaming over IP, as did Vitec. Matrox unveiled their Monarch Lecture Capture system (also based on H.264), and NTT had an impressive multistream H.264 / IP encoder/decoder system out for inspection. Some of these boxes would actually fit in your shirt pocket – that’s how small they’ve become.

Of course, the wizards at Blackmagic Design were at it again. This time, they showed an H.265-based recorder/duplicator system that can write 25 SD cards simultaneously with HEVC 2K and 4K video and audio – just plug ‘em in, and go! Over at the Adtec booth, the Affiniti system held the spotlight. This fast, “universal” bus for encoders and decoders is designed to be configured and maintained by anyone with minimal technical knowledge. It uses an SFP backplane, an approach more manufacturers are taking to keep up with the ever-higher speeds of 4K and UHD+ data.

Finally, I just had to mention the “world’s smallest 8K display,” as seen in the NHK booth. Yep, it measures just 13 inches diagonally and has an amazing pixel density of 664 pixels per inch (ppi). This display, made by the Semiconductor Energy Laboratory Company of Japan, has a resolution of 7680 by 4320 pixels and employs a top-emission white OLED layer with color filters.  (Really???)

Of Samsung, Big Screens, IoT, HDR, And Patience

Last Tuesday, April 12, Samsung held its annual press briefing and TV launch event at its new, “hip” facility in the Chelsea section of Manhattan. The multi-story building is known as Samsung837 (like a Twitter handle), as its location is on 837 Washington Street by the High Line elevated walkway.

Samsung, who has dominated the worldwide television market for many years – and who has a pretty good market share in smartphones, too – has been a leader in developing Ultra HD (4K) televisions with high dynamic range and wider color gamuts, most notably in their S-line.

At the briefing, they announced their new, top-of-the-line Ultra HDTVs, equipped for high dynamic range with quantum dot backlights manufactured by Nanosys of Sunnyvale, CA. There are a few new sizes in the line that are re-defining what a “small” TV screen means! The flagship model is the KS9800 curved SUHDTV, which will be available in a 65-inch size ($4,499), 78 inches ($9,999), and a mammoth 88-inch version ($19,999).

Samsung's Dave Dar fills in the press on the company's new line of S-UHDTVs.

Samsung’s Dave Dar fills in the press on the company’s new line of S-UHDTVs.

Stepping down, we find the KS9500-series, with a 55” model for $2,499, a 65” model for $3,699, and a 78” model for $7,999 (June). The flat-screen KS9000 comes in three flavors – 55” ($2,299), 65” ($3,499) and 75” ($6,499, June). There are two entry-level SKUs (if that’s even the right term to use) as well – the KS8500, a curved-screen version, is aimed at the consumer wanting a smaller screen, with a 55” model for $1,999 and a 65” model for $2,999. A 49” model will be available in May for $1,699.  The line is rounded out with the KS8000 flat SUHDTV (55” $1, 799; and 65” $2,799, with a 49” model for $1,499 and a 60” model for $2,299; both to come in May).

There’s not a huge difference between these models – the differences have mostly to do with curved and flat surfaces and the screen size options available. Plus a bevy of “bells and whistles.” Perhaps the most intriguing are a set of “connect and control” features.

Samsung’s been offering a Smart Hub feature for some time, and this year’s iteration lets you plug in a cable box from Comcast or Time Warner or a set-top from DirecTV, and the TV will automatically recognize the box and set up all the required control functions on the Samsung TV remote. All you have to do is plug in an HDMI cable.

The KS9800 will make you forget you ever lusted for a Pioneer Elite plasma TV. (As long as you don't watch it off-axis.)

The KS9800 will make you forget you ever lusted for a Pioneer Elite plasma TV. (As long as you don’t watch it off-axis.)

 

And here's where the magic happens - two jars with indium phosphide quantum dots suspended in fluid to produce those brilliant reds and greens.

And here’s where the magic happens – two jars with indium phosphide quantum dots suspended in fluid to produce those brilliant reds and greens.

On top of that, Samsung’s Smart Things feature provides on-off control of things like locks, lamps, and other devices connected by Wi-Fi, ZigBee, or Z-Wave protocols. The company offers switchable outlets, water sensors, proximity sensors, and motion sensors; all of which connect back to your television and smart phone for monitoring and control. (And yes, the television can also be controlled by this system.)

Samsung’s concept is this: Since we spend so much time in front of our big screen TVs, why not make them the hub of a home monitoring and control system? And why not make the connection and activation of everything from set-top boxes to remotely-controlled AC outlets a plug-and-play operation? A Smart Things starter kit is available for $249, and you can add compatible ZigBee and Z-Wave devices like thermostats, smoke and CO detectors, and locks from companies like Honeywell, Schlage, Cree, Leviton, and First Alert.

So why are Samsung and other TV manufacturers looking to get into home control systems? A combination of declining TV sales and falling prices has resulted in an accelerating transition away from Full HD (1920×1080) televisions and displays to Ultra HD (3840×2160), as TV manufacturing shifts to China and manufacturers frantically search for profitability.

Samsung – likely motivated by this trend – is looking a way to add value to TV sales, pitching a complete home entertainment and control system (with sound bars, surround audio, and Ultra HD Blu-ray players, of course) to consumers. It’s all about the Internet of Things (IoT) – the idea that every electronic gadget in your home has an IP address and can be controlled with a driver and an app.

The three-story atrium at Samsung's new 837 Washington Street is enormous - and has a working cafe with live entertainment.

The three-story atrium at Samsung’s new 837 Washington Street is enormous – and has a working cafe with live entertainment.

Think about this for a moment: Seven years ago, a first-tier 50-inch 1080p plasma equipped with active-shutter 3D playback was priced at $2,500. Today, you can buy four times the resolution, eight times the brightness, a much wider color gamut, a much lighter set with lower power consumption, and five more inches of screen for about $600 less.

Amazing! You’re thinking. My next TV is going to be an Ultra HDTV!  Good thinking, as your next TV sized 55 inches or larger will probably be an Ultra HD set anyway, since TV manufacturers are ramping down production of 1080p sets and retailers are devoting more shelf space to UHD.

While there are and will continue to be some amazing deals on Ultra HD sets, don’t forget the enhancements. In addition to the aforementioned high dynamic range and wider color gamut, higher frame rates (HFR) will also become a part of the UHD ecosystem. (So will 8K displays, but I’m getting ahead of myself…)

Problem is; no two companies are implementing all of these add-ons the same way. We have competing systems for HDR (Dolby Vision, Technicolor, BBC/NHK HLG, and yes, Samsung), and yet another controversy about pixel resolution in displays using the pentile red-green-blue-white (RGBW) pixel array (LG’s new Ultra HD OLEDs).

To date, only two HDR Blu-ray players have been announced, and only one (Samsung) is available at retail. A bigger problem: Many Ultra HDTVs have only one HDMI 2.0 input, which needs to support the CTA 861.3 HDR metadata standard. (DisplayPort 1.4 also works with CTA 861.3, but it was just announced). And HDMI 2.0 is barely fast enough for 4K HDR: If you want to connect a PC for Ultra HD gaming at 60Hz with 10-bit RGB (4:4:4) color, you’re out of luck.

Yep, I want one, too. But I think I'm going to wait a little while longer until the HDR picture clears up a bit...

Yep, I want one, too. But I think I’m going to wait a little while longer until the HDR picture clears up a bit…

In other words; it’s chaos as usual in the CE world, like HDTV was circa 1998. I don’t know how fast these issues will be worked out. All HDR-10 compatible TVs should play back 10-bit content from Ultra HD Blu-ray discs and media files. When it comes to enhanced HDR systems, Vizio, TCL, and LG support Dolby Vision, but Samsung does not; neither do Panasonic and Sony.

Only a handful of TV models have opted to include the still royalty-free DisplayPort interface to overcome some of the UHD speed limit issues of HDMI. 4K content isn’t exactly in abundance, either. No broadcasts are planned in the near future, and a handful of cable systems are working on 4K channels (remember the 3D channels from Comcast and DirecTV?). Netflix and Amazon Prime do stream in UHD, but you need a TV that supports the VP9/VP10 and H.265 codecs to watch.

If you are considering a purchase of an Ultra HDTV and not in a big hurry, my advice is to sit on your hands for another year until many of these issues get ironed out. Sometimes doing nothing really is the best option…

CES 2016 In The Rear View Mirror

I’m a little less than a week back from one of the world’s largest trade shows, the 2016 International CES. According to press releases from the Consumer Technology Association (CTA), the new name for the Consumer Electronics Association, upwards of 170,000 people attended the show this year, which was spread out over several venues in Las Vegas.

Based on the crowds I saw, I’d say that number wasn’t far off. Walking through booths in the Las Vegas Convention Center gave me the feeling of strolling along the beach, unaware that a tidal wave was sneaking up on you – one minute you had a particular exhibit all to yourself, and the next, you were swamped by a sea of bodies adorned with CES badges.

Trying to predict which trends in electronics will be “hot” each year is basically a fool’s errand. Going into the show, I was deluged with press releases about “Internet of Things” gadgets, and the show didn’t disappoint – I saw everything from connected thermostats and body sensors to pet food dispensers and shower heads that monitor how much water each member of your family uses – and record that data, too.

The LG floor-to-ceiling OLED wall at CES put many people into a trance.

The LG floor-to-ceiling OLED wall at CES put many people into a trance.

 

TCL set up their usual tiny booth in the Central Hall.

TCL set up their usual tiny booth in the Central Hall.

Last year, the show was all about Ultra HDTV, with some unusual video aspect ratios and pixel counts thrown in. This year, I figured high dynamic range (HDR) would be the “hot” item in every booth. Surprisingly, it wasn’t generating all that much buzz, even though it was featured in the Sony, Samsung, LG, and Chinese TV booths. Instead, there seemed to me much more interest in virtual reality (VR); examples of which were to be found everywhere in the LVCC and also over at the Sands Expo Center.

What was an eye-opener (although not entirely unexpected) was the reduction in booth space devoted to televisions in the Samsung, Panasonic, and LG booths. Sony chose to use Ultra HDTVs to illustrate HDR, wide color gamut, and local area dimming concepts, while Panasonic largely ignored TVs altogether, featuring just a 65-inch UHD OLED TV in one part of their booth and a 55-inch 8K LCD set in another; primarily to demonstrate 8K signal transport over optical fiber.

LG and Samsung devoted more real estate than ever before to connected and “smart” appliances, tablets, smartphones, and personal electronics like smart watches, subtly pushing TVs (of which there were still plenty, believe me) to a secondary role with less square footage. The fact is; appliances are more profitable than TVs these days…WAY more profitable. And Samsung and LG had plenty of refrigerators, ovens, washers, and even dryers out for inspection.

For LG, CES was a big “coming out” party for their expanding line of OLED Ultra HDTVs – they were everywhere, dazzling with their deep blacks and saturated colors. But LCD still plays a part in the LG ecosystem: The 98-inch 8K LCD panel that blew us away last year made a return appearance, as did the 105-inch 21:9 5K (5120×2160) model.

This Innolux 8K LCD monster TV showed up in the Hisense booth and a few other locations.

This Innolux 8K LCD monster TV showed up in the Hisense booth and a few other locations.

 

Samsung showed the

Samsung showed the “World’s largest 170-inch TV.” Apparently there are smaller ones I didn’t know about.

Over in the Samsung booth, they kept the “mine’s bigger than yours” contest going with a 170-inch Ultra HDTV based on a LCD panel fabbed at CSOT in China and equipped with quantum dots. (Last year, Samsung insisted their quantum dot illumination technology was to be called “nanocrystals.” This year, they did a 180-degree turn, and are now calling them quantum dots.) A curved 8K TV and some demos of live broadcast Ultra HD with HDR were also showcased alongside the company’s new Ultra HD Blu-ray player ($399 when it ships in the spring).

The “towers” and stacks of LG and Samsung televisions we used to marvel at a decade ago have now found their way into the ever-expanding booths of Chinese TV brands like Hisense, TCL, Changhong, Haier, Konka, and Skyworth. (Not familiar names? Don’t worry, you’ll get to know them soon enough.) And notable by its absence was Sharp Electronics, whose US TV business and assembly plant in Mexico were acquired by Hisense last year. That’s quite a change from ten years ago, when the company held a 21% worldwide market share in LCD TV shipments.

To be sure, there was a Sharp meeting room w-a-y in the back of the Hisense booth, which was enormous – almost as big as TCL’s behemoth in the middle of the Central Hall. And the Konka, Changhong, and Skyworth booths weren’t far behind in size. If you needed to see the writing on the wall regarding the future of television manufacturing, it couldn’t have been more clear – everything is slowly and inexorably moving to China. (It’s a good bet that the LCD panel in your current TV came out of a Chinese or Taiwanese assembly plant!)

TVs were just part of the story in Las Vegas. I had been waiting a few years to see which companies would finally pick up the baton and start manufacturing 802.11ad Wi-Fi chipsets. For those readers who haven’t heard of it before, 802.11ad – or its more common names, “Wireless Gigabit” and “Certified Wireless Gigabit” is a standard that uses the 60 GHz millimeter-wave band to transmit high-speed data over 2 GHz-wide channels.

Letv demonstrated wireless 4K video streaming over 60 GHz 802.11ad, using this new smartphone and Qualcomm's chipset.

Letv demonstrated wireless 4K video streaming over 60 GHz 802.11ad, using this new smartphone and Qualcomm’s chipset.

 

Are you on the USB Type-C bandwagon yet? (Check your new laptop or smartphone...)

Are you on the USB Type-C bandwagon yet? (Check your new laptop or smartphone…)

Considering that the current channels in the 2.4 GHz and 5 GHz band are only 20 MHz wide, and that the 802.11ac channel bonding protocol can only combine enough of them to create a 160 MHz channel, that’s quite a leap in bandwidth! The catch? 60 GHz signals are reflected by just about solid object, limiting their use to inside rooms. But with high-power operation and steerable antennas, those signals can travel a pretty good distance.

In-room, high-bandwidth operation is perfect for streaming video – even at 4K resolution – from phones, tablets, set-top boxes, and even Blu-ray players to TVs, projectors, AV receivers, and switching and distribution gear. Qualcomm had demos of numerous ready-to-manufacture tri-band modems (2.4/5/60 GHz), along with LETV’s latest smart phone with a built-in 60 GHz radio chip. And SiBEAM, a part of Lattice Semiconductor, showed 4K streaming through their WiHD technology, along with close-proximity interface coupling using SNAP to download images and video from a waterproofed GoPro camera.

Lattice had some other tricks up their sleeve in their meeting room. One of those was using a Windows 10 phone with a MHL (Mobile High-definition Link) connection through USB Type-C to create a virtual desktop PC. All that needed to be added was a mouse, a keyboard, and monitor. In another area, they showed a scheme to compress Ultra HD signals before transmitting them over an HDBaseT link, with decompression at the far end. This, presumably to overcome the 18 Gb/s speed limit of HDMI 2.0.

DisplayPort had a good demonstration of Display Stream Compression (DSC). That's the chipset under that enormous fan.

DisplayPort had a good demonstration of Display Stream Compression (DSC). That’s the chipset under that enormous fan.

 

Ultra HD Blu-ray is here, complete with high dynamic range mastering. How will it hold up against the growing trend to stream video?

Ultra HD Blu-ray is here, complete with high dynamic range mastering. How will it hold up against the growing trend to stream video?

Not far away, the “funny car” guys at the MHL Consortium showed their superMHL interface linking video to another LG 98-inch 8K LCD display. Converting what was once a tiny, 5-pin interface designed for 1080p/60 streaming off phones and tablets to a 32-pin, full-size symmetrical connector that can hit speeds of 36 Gb/s seems like putting Caterpillar truck tires and a big-block Chevy engine in a Smart Car to me…but they did it anyway, and added support for USB Type-C Alternate mode. Now, they’re ready for 8K, or so they keep telling me. (That’s fine, but the immediate need is for faster interfaces to accommodate Ultra HD with 10-bit and 12-bit RGB color at high frame rates. Let’s hear about some design wins!)

At the nearby VESA/DisplayPort booth, there were numerous demonstrations of video streaming over USB Type-C connections in Alternate mode, with one lash-up supporting two 1920x1080p monitors AND a 2550×1536 monitor, all at the same time. DP got somewhat faster with version 1.3 (32 Gb/s) and now a new version (1.4) will be announced by the end of January. The VESA guys also had a nice exhibit of Display Stream Compression (DSC), which can pack down a display signal by a 2:1 or 3:1 ratio with essentially no loss or latency (a few microseconds). If we’re going to keep pushing clock speeds higher and higher, compression is inevitable.

The world of display interfacing appears to becoming more disjointed, what with the majority of consumer devices still supporting HDMI 1.4 and 2.0, while an increasing number of computer and video card manufacturers are jumping on the DisplayPort bandwagon (Apple, HP, and Lenovo, among others). How superMHL will fit into this is anyone’s guess: The format is TMDS-based, like HDMI, but outstrips it in every way (HDMI 2.0 does not support DSC or USB Type-C operation). Do we really need two TMDS-based interfaces, going forward?

Speaking of USB Type-C, everybody and their brother/sister at CES had Type-C hubs, adapters, and even extenders out for inspection. If any connector is going to force the competing display interface standards to get in line, it will be this one. Apple, Intel, Lenovo, and several phone/tablet manufacturers are already casting their lots with Type-C, and it looks to be the next “sure thing” as we head toward a universal data/video/audio/power interface. I even came home with a credit card-sized press kit with a reversible USB 2.0 / 3.0 Type-C plug built-in!

First it was vinyl. Then cassettes. Now, Kodak is bringing back Super 8mm film and cameras. (I kid you not!)

First it was vinyl. Then cassettes. Now, Kodak is bringing back Super 8mm film and cameras. (I kid you not!)

 

Lenovo is one of four laptop manufacturers now offering OLED screens, here on a ThinkPad X1 Yoga (right).

Lenovo is one of four laptop manufacturers now offering OLED screens, here on a ThinkPad X1 Yoga (right).

So – how about HDR? Yes, a few companies showed it, and there were spirited discussions over dinner whether OLEDs could actually show signals with high dynamic range (they most assuredly can, as they can reproduce 15 stops of light from just above black to full white without clipping) and whether you actually need thousands of cd/m2 to qualify as an HDR display (I’m not in that camp; displays that bright can be painful to look at).

For LCDs, quantum dots (QDs) will lead the way to HDR. Both QD Vision and 3M had demos of quantum dot illuminants, with QD Vision focusing on light pipes for now and 3M partnering with Nanosys to manufacture a quantum dot enhancement film. Both work very well and provide a much larger color gamut than our current ITU Rec.709 color space, which looks positively washed-out compared to the more expansive Rec.2020 color gamut associated with UHD and HDR. QD Vision also showed the reduction in power consumption over OLEDs when using QDs. However, you won’t get the deep blacks and wide viewing angles out of an LCD in any case, so a few more watts may not matter to the videophiles.

The Ultra HD Blu-ray format had its formal debut at CES with Panasonic and Samsung both showing players. The latter can be pre-ordered for $399 and will ship in the spring. (Remember when Samsung’s first-ever Blu-ray player sold for nearly $2,000 almost a decade ago?) To support HDR – which requires 10-bit encoding – the HDMI interface must be type 2.0a to correctly read the metadata. That can be in the DolbyVision format, or the Technicolor format, but the baseline definition is HDR-10.

LG Display's flexible 18-inch OLED display was just too cool for words.

LG Display’s flexible 18-inch OLED display was just too cool for words.

 

Stand four 65-inch UHD OLED panels on end, stitch them together, and this is what you get. Bibbedy-bobbedy-boo!

Stand four 65-inch UHD OLED panels on end, stitch them together, and this is what you get. Bibbedy-bobbedy-boo!

I saved the best for last. Every year, LG Display invites a few journalists up to what we call the “candy store” to see the latest in display technology. And this year didn’t disappoint: How about dual-side 55-inch flexible OLED TVs just millimeters thick? Or a 25-inch waterfall (curved) display that could form the entire center console in a car, with flexible OLEDs in the dashboard creating bright, colorful, and contrasty gauges?

LGD has WAY too much fun coming up with demos for this suite. I saw four 65-inch OLED panels stacked on end, edge to edge, and bent into an S-curve to create a 2.2:1 ratio widescreen UHD+ display. And it also had video playing on both sides. In another location, I saw a jaw-dropping 31.5” 8K LCD monitor with almost perfect uniformity, and an 82-inch “pillar” LCD display.

How about a 55-inch UHD OLED display rolled into a half-pipe, with you standing at the center, playing a video game? Talk about filling your field of view! Next to it was a convex 55-inch display, wrapped around a ceiling support pole. And next to that, a 55-inch transparent OLED display with graphics and text floating over real jewelry, arranged on tiers. The actual transparency index is about 40% and the concept worked great.

Toyota's Future Concept Vehicle (FCV) is a bit roomier than last year's sidecar-shaped model.

Toyota’s Future Concept Vehicle (FCV) is a bit roomier than last year’s sidecar-shaped model.

 

Wow, drones are getting REALLY big these days!

Wow, drones are getting REALLY big these days!

The icing on the cake was an 18-inch flexible OLED with 800×1200 resolution that could be rolled up into a tube or a cone-like shape while showing HD video. This was one of those “I gotta get me one of these!” moments, but significantly, it shows how OLED technology has matured to the point where it can be manufactured on flexible substrates. And what is the largest market in the world or displays? Transportation, where G-forces and vibration eventually crack rigid substrates, like LCD glass.

That’s just a snapshot of what I saw, and I haven’t even mentioned drones (buzzing all over the place), fold-up scooters and hoverboards, smart appliances, pet cams, alarms that alert you when an alarm goes off (really!), wooden smartphones (really!), talking spoons and forks (really!), toothbrushes linked to video games (would I kid you?), and 4K action cams with built-in solar cell chargers.

Gotta run now. My phone just sent me a Wi-Fi alarm that a Bluetooth-connected doorbell camera spotted the UPS guy delivering a package I was already alerted about via email to my desktop that signaled a buzzer via ZigBee in my virtual desktop PC that was connected wirelessly to my smartphone, currently streaming 4K video over a 60 GHz link to my “smart” TV that is also…also…also…

Oh, great. Now I’ve forgotten what I was talking about…Does anyone make an iRemember app? (Look for my “second thoughts” column later this month…)