Posts Tagged ‘Kramer’

ISE 2018 In the Rear View Mirror

I just returned from a week in Amsterdam in what is now the largest AV trade show in the world, Integrated Systems Europe. The organizers claim that 70,000 people attend this event and that number is certainly believable: The RAI exhibition center had to erect two additional temporary “bubble” halls to hold all of the manufacturers, and the foot traffic was crazy in the main halls.

If there was an overarching theme to the show, it had to be the migration of AV signal distribution to IT networks. Booth after booth featured exhibits of video encoders, demonstrations of compression and picture quality vs. latency, giant signs extolling the virtues of video and audio distributed over 1 Gb and 10 Gb networks, and plenty of “us vs. them” comparisons.

There are so many players in the AV-over-IT world that you need a scorecard to keep track of them. Of course, everyone has their own “special sauce” when it comes to sampling, compressing, and recovering video (audio is easy!), and those “us vs. them” demonstrations usually featured (a) a live video source, (b) that same video as processed through the manufacturer’s encoding system, and (c) that same video as processed through the competition’s video encoding system.

Crestron claims near-zero latency for their DM NVX codec, compared to SVSI…

 

…except that the SDVoE exhibit showed that DM NVX does have latency – at least, more than SDVoE’s Blue River system.

Latency was a big topic at the show. It’s defined as the time delay between a frame of source video and that same frame of video after recovery from a decoder and is typically measured in milliseconds. For some reason, the AV industry is obsessed with “near zero” latency in AV installations and I lost track of all the booths claiming their products had “little,” “near zero,” and “almost none.”

Crestron had a large exhibit in their booth, touting their DM NVX system for signal distribution and control over IT using 1 Gb network switches while maintaining image quality. To drive the point home, they had a side-by-side comparison of SVSI and HDBaseT transmission with DM NVX to show that it had the lowest latency. Time code was shown on all displays and visitors were encouraged to “take a picture with your phone” to confirm their claims.

At the back of another hall, the SDVoE Alliance had an exhibit saying, “Not so fast!” Their demo compared a video source to DM NVX and an SDVoE Blue River NT codec and appeared to show that the Crestron product had higher latency (and once again, visitors were encouraged to take a picture and confirm what they saw). The big difference? SDVoE promotes the use of 10 Gb switches instead of 1 Gb switches (a point I concur with) so even signals with 4K resolution can travel with light compression.

I’m not sure what codec Crestron is using, but the Blue River codec is adapted from VESA’s Display Stream Compression (DSC), an entropy-based compression scheme with extremely low latency that is well-suited to packing down 4K and even 8K signals.

Epson was mapping images onto a projector (right) that was projecting onto a large screen (left). Did you get all that?

 

Optoma is now in the LED display wall business.

Consider that HDMI version 2.0 is only fast enough to transport 2160p/60 with 8-bit RGB color and you can see the advantage of 1.5:1 and 2:1 compression to increase color bit depth – essential to distributing signals with high dynamic range and wide color gamuts, not to mention high frame rate video. (For those keeping score at home, a 2160p/60 signal with 10-bit RGB color requires a data rate of 21.39 Gb/s, so with a little over 2:1 compression, it will pass through a 10 Gb/s network switch.)

This looming battle between codecs and Valens’ HDBaseT format will only heat up as more manufacturers adopt ‘pure’ AV-over-IT solutions. HDBaseT is still limited to 328 feet of cable length and data rates of 10.2 Gb/s, although Aurora Multimedia claims their IPBaseT hybrid product can push HDBaseT speeds much higher and accommodate 4K signals with deeper color. Further confusing the issue is the TiCo (Tiny Codec) which is based on JPEG XS, a “mezzanine” codec that will permit lighter compression of video so that it can travel through a 10 Gb network.

Another trend was the explosive growth of LED signage. Hall 2 had so many Chinese LED manufacturers that I couldn’t keep track of the all. The “hot” technology nowadays is micro LED, or LED pixel elements with a pitch less than 1 millimeter. Consider that a 50-inch plasma TV from 1998 had a pixel resolution of 1280×768 or about 1.2mm, and we can now install a wall-sized LED display with a dot pitch approaching .8mm.

There’s no question that these products are having an impact on the projector industry. As I’ve mentioned in the past, every concert I’ve attended in the past 3 years has relied on large LED displays to show live video and graphics – none of them employed projectors, so far as I can remember. One consequence of this trend is that projector manufacturers including Barco, Christie, Panasonic, and Digital Projection chose to emphasize LED displays and walls in their booths (like covering their bets) alongside their flagship products. (Even Optoma did this!)

Absen had a humongous booth at ISE and is becoming a major player in LED signage in the U.S.

 

4K LCDs are here for digital signage and Leyard was promoting a full line of them.

In contrast, the challenge for Chinese LED display companies is that no one really knows anything about them, not to mention how reliable their products are. So now we’re seeing familiar names from the U.S. AV industry showing up in engineering, marketing, and sales positions for the likes of Leyard/Planar, Unilumen, Absen, and other brands, a strategy meant to bridge the familiarity gaps and increase sales.

Another area of interest is collaboration. Mersive’s Solstice had an exhibit that stressed the importance of analytics, gathering data on who was logged into a presentation sharing system and when. Kramer’s VIA product also has an analytics function and it looks like other companies are heading in that direction. DVDO, formerly owned by Silicon Image / Lattice, is independent again and has joined the collaboration space with their Tile product. This can stream and tile five independent sources of Full HD video, not to mention share screens and cast.

You wouldn’t think of “Sharp” and “broadcast video camera” in the same sentence – yet, here they are with exactly that.

 

Panasonic showed an 8K workspace, made up of two side-by-side 4K LCD monitors equipped with touchscreen overlays.

The 800-pound gorilla in this space is, of course, Barco’s ClickShare. There are three iterations of the product, with the top-of-the-line CSE 800 allowing 8 shared screens at the same time through dual 4K display outputs. Crestron had a demo of AirMedia that claimed higher bandwidth than Solstice (1.6 Mb/s), full network security, .05 seconds latency (there’s that latency thing again!), and enterprise management software.

There was even a minor controversy at ISE. Barco posted a press release stating that they had “instructed bailiffs to approach the booth of Kindermann and collect evidence of its Klick & Show wireless presentation system present at the show” to be used in patent infringement suits. Apparently, the same thing happened last year with Kanex Pro at ISE. What really happened was that nothing was taken from Kindermann’s booth, but the press release did create some discussion.

The continuing decrease in hardware costs are the real elephant in the room. Consider that it was possible to buy a 50-inch RCA 4K TV at Shop Rite the week before the Super Bowl, and you can clearly see just how quickly value is being sucked out of consumer and commercial AV gear. In addition to the “hang and bang” projector market getting hammered by ever-cheaper and larger LCD displays (which are moving quickly to 4K resolution exclusively), AV signal management equipment – switchers, distribution amplifiers, and extenders – is susceptible to this ‘dollar store’ trend as more and more brands come to market with hardware largely manufactured in Asia.

The AV-over-IT business is a clear example. Most IT products are sold through distribution and it’s likely that most AV products will follow that path in the near future. The core products for any AV-over-IT installation are encoders and decoders, and more than a few products I saw are being sourced from China. Indeed, more than one booth at ISE featured the same exact product in a different housing, the only differential being price and perhaps a few bells and whistles.

One thing is for certain. Many large companies who have ruled the AV roost for decades are finding themselves in an unfamiliar position these days, trying to keep up with the pack as the migration to AV-over-IT continues. We’ll see how the trend plays out at InfoComm in June…

InfoComm 2017 In The Rear View Mirror

InfoComm 2017 has come and gone, and left us with lots to think about.

For me, this year’s show was hectic, to say the least. I presented my annual Future Trends talk on Tuesday to kick off the Emerging Trends session, then conducted a 3-hour workshop on RF and wireless that afternoon to the largest crowd I’ve ever had for the class. (It may be the largest crowd I ever get as I’m thinking of shelving this class.)

Bright and early on Wednesday morning, I taught a 2-hour class  on AV-over-IT (the correct term; you could also use “AV-with-IP”) to a full house. There were even some folks standing in the back of the room. I guessed at least 200 were in attendance.

Thursday morning found me back in the same space, talking about 4K and Ultra HDTV to a smaller crowd (maybe not as “hot” a topic?) and urging them to set their BS meters to “high” when they headed to the show floor to talk to manufacturers about 4K-compatible/ready/friendly products.

With other presentation commitments, it worked out to nearly 15 hours standing in front of crowds and talking. Tiring to say the least, but I did get a ton of great follow-up questions after each session. People were paying attention!

AV-over-IT was a BIG theme at InfoComm, and it was hard to miss.

Mitsubishi had a very nice fine-pitch LED display at the show – one of the few that are not built in China.

The migration to using TCP/IP networks to transport video and audio instead of buying and installing ever-larger and more complex HDMI switchers and DAs is definitely catching steam. My colleagues and I have only been talking about this for over a decade and it’s rewarding to see that both manufacturers and end-users are buying in.

And why not? Computer hardware couldn’t get much cheaper. For my AV/IT demo, I was streaming a local TV station, broadcasting in the 720p HD format, using an H.264 AVC encoder/decoder pair running through a 1GigE NetGear managed switch. The streaming rates were in the range of 15 – 18 Mb/s, so I had plenty of headroom.

It worked like a champ. I was able to show how adjusting the group of pictures (GOP) length affected latency, along with the effects of constant bitrate (CBR) vs. variable bitrate (VBR) encoding. If I could have dug the gear up in time, I would have demonstrated UHD content through a 10 Gb/s switch – same principles, just a faster network.

I saw more companies than ever this year showing some sort of AV-over-IT solution. (Almost as many as those showing LED walls!) Lots of encoders and decoders, using H.264, Motion JPEG, and JPEG2000 formats; connected through fast switches and driving everything from televisions to projectors.

If it’s REALLY happening this time, then this is BIG. Migration to AV-over-IT is a big shot across the bow of companies that sell large HDMI-based matrix switches, not to mention distribution amplifiers and signal extenders – both made obsolete by this new technology. With AV on a network, all you need is a fast switch and a bunch of category cable. For longer runs, just run optical fiber connections to SPF fiber connections on the switch.

LG showed off its unique curved OLED displays – and they’re dual-sided.

Meanwhile, Samsung unveiled the first digital signage monitors to use quantum dot backlight technology for high dynamic range and wide color gamuts.

Hand-in-hand with this migration to an IT-based delivery system is a steady decline in the price of hardware, which has impacted the consumer electronics industry even harder. Consider that you can now buy a 65-inch Ultra HDTV (4K) with “smart” capabilities and support for basic high dynamic range video for about $800.

That’s even more amazing when you consider that the first Ultra HD displays arrived on our shores in 2012 with steep price tags around $20,000. But the nexus of the display industry has moved to mainland China, creating an excess of manufacturing capacity and causing wholesale and retail prices to plummet.

There is no better example of China’s impact on the display market than LED display tiles and walls. These products have migrated from expensive, coarse-resolution models to super-bright thin tiles with dot pitches below 1 millimeter – about the same pitch as a 50-inch plasma monitor two decades ago.

Talk to projector manufacturers and they’ll tell you that LED displays have cut heavily into their business, especially high-brightness projectors for large venues. LED wall manufacturers were prominent at the show, and some are hiring industry veterans to run their sales and marketing operations; removing a potential barrier to sales in this country by presenting potential customers with familiar faces.

Panasonic showed there are still plenty of applications for projection, especially on curved surfaces.

Absen is an up-and-coming LED brand, and they’re hiring veterans of the U.S. AV market to push sales along.

At the other end, large and inexpensive LCD displays with Full HD resolution have killed off much of the “hang and bang” projector business, and large panels with Ultra HD resolution are now popping up in sizes as large as 98 inches. The way things are going in Asia, Full HD panel production may disappear completely by the end of the decade as everyone shifts to Ultra HD panel production.

Even the newest HDR imaging technology – quantum dots – made an appearance in Orlando in a line of commercial monitors with UHD resolution. Considering that QD-equipped televisions have only been around for a couple of years, that’s an amazingly accelerated timeline. But compressed timelines between introduction and implementation are the norm nowadays.

This was my 24th consecutive InfoComm and the 21st show (so far as I can remember) where I taught at least one class. When I went to my first show in Anaheim, CRT projectors were still in use, a ‘bright’ light valve projector could generate maybe 2000 lumens, LCD projectors cost ten grand and weighed 30 pounds, and composite video and VGA resolution ruled the day. RS232 was used to control everything and stereo was about as ‘multichannel’ as audio got.

All of that has passed into oblivion (except for RS232 and VGA connectors) as we continue to blow by resolution, size, speed, and storage benchmarks. The transition to networked AV will result in even more gear being hauled off to recycling yards, as will advances in wireless high-bandwidth technology, flexible displays, cloud media storage and delivery, and object-based control systems.

Can’t wait for #25…