Posts Tagged ‘InfoComm’

On China, IoT, AI, and Trade Shows

As we approach the end of the second decade of the 21st century, it’s worth stepping off the technology express for a moment to consider some of the changes we’re seeing in our industry, in parallel industries, and in everyday life – changes that have been wrought by a combination of geographical, economical, and political factors.

It’s no secret that most of the electronics manufacturing (semiconductors, televisions, mobile phones, computers, tablets, appliances, wireless gear) in the world is moving to or has moved to mainland China and Taiwan, along with several southeastern Asia countries. Just 25 years ago, it was common to spot the words “Made in Japan” on your table radio, television, camera, and even your car.

Nowadays, “China” has been substituted for “Japan,” even for many products manufactured and sold by Korean companies like Samsung, LG, Hyundai, Daewoo, and Kia. That’s because labor costs are so much lower and the Chinese government as a so-called “silent” partner can easily clear land for (and even build) state-of-the-art factories. They also provide a large labor pool to fill the positions in those factories.

And the Chinese have made major investments of their own in new technology. One of the largest manufacturers of LCD panels in the world is TCL, who has a partnership with Samsung in a large LCD plant known as China Star Optoelectronic Technologies. Not only that, TCL manufactures and sells their own brand of televisions in the U.S. Both TCL and Hisense (another Chinese brand who also owns the Sharp brand name) have been selling 55-inch 4K (yes, 4K!) televisions for as little as $500, with some specials dropping below $400.

The Skyworth OLED TV booth at CES 2017.

The result of this shift to the Far East has been a dramatic drop in the price of not only televisions, but a host of other electronic gadgets. I recently bought a new Lenovo laptop with solid-state drive, 15” screen, a fast i7 Intel processor, tons of RAM for both the PC and video card, and the latest in 802.11ac channel-bonding WiFi tech. My cost was a just under $1300 with shipping and tax.

Because the world of professional electronics (including AV gear) is largely driven by the world of consumer electronics, we’re now seeing those same dramatic price drops in everything from HDMI switchers to pan/tilt/zoom cameras. And the U.S., Japanese, Korean, and European brands that sell that stuff have had to cut their prices as well.

Now, we’ve got the Internet of Things in town. Anything that can be fitted with a Media Access Control (MAC) port and has a WiFi connection can now be accessed, configured, and controlled from an Internet connection just about anywhere in the world. All of the gear you’d install in a conference room or classroom can be set up and operated with nothing more than a tablet and software equipped with simple drag-and-drop GUIs. And the software doesn’t cost all that much.

Throw in artificial intelligence (AI) and you now have an AV installation that can configure itself once powered up. That’s right – all of the displays, lighting, screens, audio mixers, thermostats, amplifiers, and switching equipment can talk to the control software, load the appropriate drivers, and create a touchscreen display without you having to lift a finger. And you can talk to an assistant like Siri or Alexa to walk through the process.

Add it all together – lower manufacturing costs, an increasing percentage of CE products (equipped with IoT functionality) finding their way into commercial AV installations, and artificial intelligence to handle the once-tedious job of writing control code and commands. More power in the products at lower costs to you.

That last part is what’s causing major headaches for manufacturers. Instead of price tags with 3 or 4 zeros following the first integer, a majority of products are being sold with two or three zeros. That has a direct impact on profitability, one which cannot be simply fixed by increasing the volume of sales – the availability of cheap electronics has spawned too many competitors, which is great news for price-sensitive consumers.

And that brings me to trade shows. Alert readers will notice that the once-mammoth booths and stands of Japanese and Korean manufacturers at NAB and InfoComm have gotten noticeably smaller as the Chinese booths have gotten larger. No surprise – if you are selling hardware and software with smaller price tags, you have less money to put into a trade show booth. And some of these well-known brands are pushing more and more of their products through distribution, not traditional dealers. (It’s that margin/profitability thing again.)

What’s more; the lines between residential and commercial gear and installations have been steadily blurring for over a decade. (Admit it – you’ve been installing regular TVs instead of commercial monitors most of the time, right? Not that there’s any real difference between them.) Many residential dealers who were once shoveling in the cash have started bidding on commercial work, and vice-versa.

It’s not surprising to see some of the hardware on view at the annual CES in January make repeat appearances at ISE, NAB, InfoComm, and CEDIA Expo as the year winds on. In fact, one prominent Japanese manufacturer (begins with “P”) has focused more commercial product at CES recently, having dropped out of the TV business altogether.

We’ll probably see some consolidation of trade shows in the next few years as attendees come to realize there isn’t a whole lot of difference from one show to the next. The increasing use of CE products for installations, along with improved AI and support for IoT, will actually deliver the promise of ‘plug and play’ (along with a new set of headaches from hackers and malware) to our industry, reducing the purchasing decisions to best price and warranty/reliability.

Some questions to think about: How long before Amazon starts selling commercial AV gear? Is it now practical to view a manufacturer’s product line using VR technology? (Some companies have already tried this.) Just how much education do you need to learn how to configure a room full of IoT hardware?

And just how much of a difference is there between a video encoder made by “You never heard of us, we’re first-timers at this show” and “Buy from us, we’ve been selling into this industry for 40 years” – especially if both products are made in China, possibly at the same factory and using the same chip sets? (Not much, if any…)

InfoComm 2017 In The Rear View Mirror

InfoComm 2017 has come and gone, and left us with lots to think about.

For me, this year’s show was hectic, to say the least. I presented my annual Future Trends talk on Tuesday to kick off the Emerging Trends session, then conducted a 3-hour workshop on RF and wireless that afternoon to the largest crowd I’ve ever had for the class. (It may be the largest crowd I ever get as I’m thinking of shelving this class.)

Bright and early on Wednesday morning, I taught a 2-hour class  on AV-over-IT (the correct term; you could also use “AV-with-IP”) to a full house. There were even some folks standing in the back of the room. I guessed at least 200 were in attendance.

Thursday morning found me back in the same space, talking about 4K and Ultra HDTV to a smaller crowd (maybe not as “hot” a topic?) and urging them to set their BS meters to “high” when they headed to the show floor to talk to manufacturers about 4K-compatible/ready/friendly products.

With other presentation commitments, it worked out to nearly 15 hours standing in front of crowds and talking. Tiring to say the least, but I did get a ton of great follow-up questions after each session. People were paying attention!

AV-over-IT was a BIG theme at InfoComm, and it was hard to miss.

Mitsubishi had a very nice fine-pitch LED display at the show – one of the few that are not built in China.

The migration to using TCP/IP networks to transport video and audio instead of buying and installing ever-larger and more complex HDMI switchers and DAs is definitely catching steam. My colleagues and I have only been talking about this for over a decade and it’s rewarding to see that both manufacturers and end-users are buying in.

And why not? Computer hardware couldn’t get much cheaper. For my AV/IT demo, I was streaming a local TV station, broadcasting in the 720p HD format, using an H.264 AVC encoder/decoder pair running through a 1GigE NetGear managed switch. The streaming rates were in the range of 15 – 18 Mb/s, so I had plenty of headroom.

It worked like a champ. I was able to show how adjusting the group of pictures (GOP) length affected latency, along with the effects of constant bitrate (CBR) vs. variable bitrate (VBR) encoding. If I could have dug the gear up in time, I would have demonstrated UHD content through a 10 Gb/s switch – same principles, just a faster network.

I saw more companies than ever this year showing some sort of AV-over-IT solution. (Almost as many as those showing LED walls!) Lots of encoders and decoders, using H.264, Motion JPEG, and JPEG2000 formats; connected through fast switches and driving everything from televisions to projectors.

If it’s REALLY happening this time, then this is BIG. Migration to AV-over-IT is a big shot across the bow of companies that sell large HDMI-based matrix switches, not to mention distribution amplifiers and signal extenders – both made obsolete by this new technology. With AV on a network, all you need is a fast switch and a bunch of category cable. For longer runs, just run optical fiber connections to SPF fiber connections on the switch.

LG showed off its unique curved OLED displays – and they’re dual-sided.

Meanwhile, Samsung unveiled the first digital signage monitors to use quantum dot backlight technology for high dynamic range and wide color gamuts.

Hand-in-hand with this migration to an IT-based delivery system is a steady decline in the price of hardware, which has impacted the consumer electronics industry even harder. Consider that you can now buy a 65-inch Ultra HDTV (4K) with “smart” capabilities and support for basic high dynamic range video for about $800.

That’s even more amazing when you consider that the first Ultra HD displays arrived on our shores in 2012 with steep price tags around $20,000. But the nexus of the display industry has moved to mainland China, creating an excess of manufacturing capacity and causing wholesale and retail prices to plummet.

There is no better example of China’s impact on the display market than LED display tiles and walls. These products have migrated from expensive, coarse-resolution models to super-bright thin tiles with dot pitches below 1 millimeter – about the same pitch as a 50-inch plasma monitor two decades ago.

Talk to projector manufacturers and they’ll tell you that LED displays have cut heavily into their business, especially high-brightness projectors for large venues. LED wall manufacturers were prominent at the show, and some are hiring industry veterans to run their sales and marketing operations; removing a potential barrier to sales in this country by presenting potential customers with familiar faces.

Panasonic showed there are still plenty of applications for projection, especially on curved surfaces.

Absen is an up-and-coming LED brand, and they’re hiring veterans of the U.S. AV market to push sales along.

At the other end, large and inexpensive LCD displays with Full HD resolution have killed off much of the “hang and bang” projector business, and large panels with Ultra HD resolution are now popping up in sizes as large as 98 inches. The way things are going in Asia, Full HD panel production may disappear completely by the end of the decade as everyone shifts to Ultra HD panel production.

Even the newest HDR imaging technology – quantum dots – made an appearance in Orlando in a line of commercial monitors with UHD resolution. Considering that QD-equipped televisions have only been around for a couple of years, that’s an amazingly accelerated timeline. But compressed timelines between introduction and implementation are the norm nowadays.

This was my 24th consecutive InfoComm and the 21st show (so far as I can remember) where I taught at least one class. When I went to my first show in Anaheim, CRT projectors were still in use, a ‘bright’ light valve projector could generate maybe 2000 lumens, LCD projectors cost ten grand and weighed 30 pounds, and composite video and VGA resolution ruled the day. RS232 was used to control everything and stereo was about as ‘multichannel’ as audio got.

All of that has passed into oblivion (except for RS232 and VGA connectors) as we continue to blow by resolution, size, speed, and storage benchmarks. The transition to networked AV will result in even more gear being hauled off to recycling yards, as will advances in wireless high-bandwidth technology, flexible displays, cloud media storage and delivery, and object-based control systems.

Can’t wait for #25…

InfoComm Tech Trends for 2017

Although I’ve been working in the AV industry since 1978 (the good old days of tape recorders, CRT projectors, and multi-image 35mm slide projection), I only started attending InfoComm in 1994.

At that time, the Projection Shoot-Out was picking up steam with the first solid-state light modulators (LCDs). Monitors still used CRTs, and some new-fangled and very expensive ‘plasma’ monitors were arriving on our shores. “HD resolution” meant 1024×768 pixels, and a ‘light valve’ projector could crank out at best about 2,000 lumens. The DB15 and composite video interfaces dominated connections, and a ‘large’ distribution amplifier had maybe four output ports on it.

I don’t need to tell you what’s transpired in the 23 years since then. This will be my 24th InfoComm, and it might be the most mind-boggling in terms of technology trends. We’ve come a long way from XGA, composite video, CRTs, 35mm slides, analog audio, and RS232. (Okay, so that last one is still hanging around like an overripe wine.)

I’ve mentioned many of the trends in previous columns, so I’ll list what I think are the most impactful and exactly why I feel that way. I should add that I’m writing this just after attending the NAB 2017 show, where many of my beliefs have been confirmed in spades.

Light-emitting Diodes (LEDs) are taking over (the world): This is an obvious one, but now they’re simultaneously threatening both the large venue projection and direct-view display markets. I saw at least a dozen LED brands at NAB – most of them from mainland China – offering so-called ‘fine pitch’ tiled displays. These range from 1.8mm all the way down to .9mm, which is about the same pitch as a 50-inch plasma TV had 17 years ago.

The challenge for anyone here is who to buy from and which products are reliable. You wouldn’t recognize most of these companies, as they are largely set up to market LED tiles to the outside world. And some of them supply companies you do know in the LED marketplace. With brightness levels hitting 400 – 800 nits for fine pitch (and over 2,000 nits for coarser pixel arrays), it’s no wonder that more applications are swinging away from front projection to tiles.

And there are even finer screens in the works with pixel pitches at .8mm and smaller. That’s most definitely direct-view LCD territory, at least at greater viewing distances. But the LCD guys have some tricks of their own…

Cheaper, bigger, 1080p and UHD flat screens: Right now, there are too many LCD ‘fabs’ running in Asia, making too much ‘glass.’ More and more of that ‘glass’ will have Ultra HD resolution. That, in turn, is forcing down prices of 1080p LCD panels, making it possible for consumers to buy super-cheap 60-inch, 65-inch, and 70-inch televisions.

Consequently, it will be easy to pick up 65-, 70-, and even 85-inch LCD screens for commercial installations for dirt-cheap prices. We’re talking about displays that can be amortized pretty quickly – if they last a couple of years, great. But even if they have to be replaced after a year, the replacement costs will be lower. And with the slow migration to UHD resolution in larger sizes (it’s a matter of manufacturing economies); you can put together tiled 8K and even 16K displays for a rational budget.

Don’t expect OLEDs to make too many inroads here. They don’t yet have the reliability or sheer brightness of LCDs, and you’re going to start seeing some high-end models equipped with quantum dot enhancements for high brightness and high dynamic range (HDR) support. Speaking of which…

High dynamic range and wide color gamut technologies were all over the place at NAB. There is so much interest in both (they go hand-in-hand anyway) that you will numerous demos of them in Orlando. Who will use HDR and WCG? Anyone who wants a more realistic way to show images with brightness, color saturation, and contrast levels that are comparable to the human eye.

Obviously, higher resolution is very much part of this equation, but you don’t always need 4K to make it work. Several companies at NAB, led by Hitachi, had compelling demos of 2K (1080p) HDR. On a big screen, the average viewer might not even know they’re looking at a 1080p image. And yes, both enhancements do make a difference – they’re not just bells and whistles.

AV distribution over networks: I’ve been teaching classes in networked AV for over a decade, but it has finally arrived. You won’t hear nearly as much about HDMI switching and distribution in Orlando as you will about JPEG2000, latency, network switch speeds, and quality of service issues.

That’s because our industry has finally woken up and smelled the coffee: Signal management and distribution over TCP/IP networks is the future. It’s not proprietary HDMI formats for category wire. It’s not big, bulky racks full of HDMI hardware switches. No, our future is codecs, Layer 2/3 switches, cloud servers and storage, faster channel-bonding WiFi, and distribution to mobile devices.

You couldn’t throw a rock at NAB without hitting a company booth that was showcasing a codec or related software-based switching (SBS) product. More and more of them are using the HEVC H.265 codec for efficiency or M-JPEG2000 for near-zero latency. Some companies demonstrated 25 Gb/s network hardware for transport and workflows, while others had scheduling and playout software programs.

Internet of Things control for AV: You can defend proprietary control systems all day long, but I’m sorry to tell you that you’re on the losing end of that argument. IoT is running wild in the consumer sector, which of course wields great influence over our market. App-based control has never been easier to pull off, which is why the long-time powers in control are scrambling to change gears and keep up with the crowd.

In short; if it has a network interface card or chip, it can be addressed over wireless and wireless networks with APIs and controlled from just about any piece of hardware. And control systems have gotten smart enough that you can simply connect a piece of AV hardware to a network and it will be identified and configured automatically. You won’t have to lift a finger to do it.

It is a sobering thought to realize I’m in my 40th year working in this industry. Yet, I have never seen the technology changes coming as hard and as fast as I have in the past decade (remember, the first iPhone appeared in 2007). It’s all migrating to networks, software control, and displays that have LEDs somewhere in the chain. Tempus fugit…

InfoComm 2016 In The Rearview Mirror

Another InfoComm show has come and gone. This is my 23rd InfoComm and it’s hard to imagine when I first set foot in Anaheim way back in 1994 – ostensibly to cover the now-defunct Projection Shoot-Out – that I’d still be making the treks to Orlando and Las Vegas, let alone teaching classes and joining the InfoComm faculty.

For this recap, I’ll focus on trends I saw at the show that will continue to impact our industry for some time to come. And there were plenty of them, everywhere you looked.

First off; I’ve been saying for several years now that software is becoming increasingly more important than hardware in our industry (and across all market segments  – look at how inexpensive Ultra HDTVs have become already), and that we’d start to see less of a focus on expensive hardware and more of an emphasis on software and managed services.

And that’s exactly what I spotted in Las Vegas. Astute observers noticed that the once humongous booths set up by the likes of Sony, Panasonic, Crestron, LG, Samsung, Hitachi, and other companies have gotten a bit smaller. (NEC, Da-Lite, and Christie were exceptions to the rule.)

AMX, when it was a stand-alone company, used to have an enormous booth at the show (not to mention a huge party every year). Now, AMX is limited to a few small stands within the Harman booth.  Walk the show floor these days and you’ll recognize other once-mighty brands that have been acquired by holding companies and now occupy much smaller footprints.

And this trend shouldn’t be any surprise. When hardware used to sell for four and five figures (and in some cases, six figures), you could justify those million-dollar booths that looked like mini-malls. (Remember the huge tented Sanyo projector booths?) But that’s not the case anymore.

Kramer's huge booth at InfoComm, touting a shift away from

Kramer’s huge booth at InfoComm, touting a shift away from “big boxes” to software and the cloud, was one of the exceptions to the trend to go smaller.


LG is doing some very cool things with curved displays, thanks to advancements in OLED and LCD manufacturing.

LG is doing some very cool things with curved displays, thanks to advancements in OLED and LCD manufacturing.

Practically speaking, how much real estate do you need to talk about software programs and managed services? The same thing is happening at NAB, where once humongous companies like Harris (now Imagine) are largely touting services and not hardware.

Even Digital Projection has scaled back its enormous multi-tier InfoComm booth. And projectiondesign has shed some square footage since being acquired by Barco, which has itself gone on a square footage diet. Ditto Sharp, which had one of the smallest booths ever at this show, perhaps related to the company’s ongoing financial challenges.

Surprisingly, Toshiba showed there is indeed a second act by showing up with a nice-size booth full of LCD monitors for tiled display walls. That’s not exactly an easy market to compete in, what with LG, Samsung, and NEC having a big footprint. But they’re giving it a shot.

Toshiba has re-entered the super-competitive world of display walls...a market they once dominated 20 year ago.

Toshiba has re-entered the super-competitive world of display walls…a market they once dominated 20 year ago.



The “surfer dude engineers” from Santa Barbara have a very nice 4K-over-IP encoder/decoder line-up!

Another trend that’s really picking up speed is the move away from projection lamps to solid-state illumination systems, most often lasers with color phosphor wheels. The availability of large, inexpensive LCD displays has cut deeply into sales of projectors – particularly in small classrooms and meeting rooms, where we used to put in “hang and bang” projection systems.

If you talk to people who’ve made the switch away from projection to direct-view, the reason they most frequently cite is that they don’t have to change out lamps anymore, and the LCD displays can be used under normal room lighting and turn on instantly.

Well, projector manufacturers have gotten the message and are moving en masse to solid state light sources. Early adopters like Casio have reaped the benefits, but now everyone from Sony and Panasonic to Vivitek and Optoma is on board.

Even so, the corner wasn’t really turned until this year when Epson – one of the big manufacturers of projection lamps – showed a 25,000-lumen 3LCD projector powered by a laser light engine. And I saw more than one UHD-resolution projector using the laser-phosphor combination, even in ultra-short throw configurations.

Epson finally got religion and showed its first laser/phosphor 3LCD projector this year - a 25,000 lumens model.

Epson finally got religion and showed its first laser/phosphor 3LCD projector this year – a 25,000 lumens model.


And Panasonic harnessed laser/phosphor technology to a new high-brightness 4K projector.

And Panasonic harnessed laser/phosphor technology to a new high-brightness 4K projector.

How much longer will we be changing out lamps? I don’t think it will be more than a few years before the majority of projectors offered for sale will use laser or LED light engines (or both). There will be exceptions for certain models, but for all intents and purposes, short-arc lamps are toast.

Here’s another trend – LED walls. I tried to count all of the exhibitors at InfoComm and lost track after wandering through the North Hall. And just about every single exhibitor was based in China, with names you would not recognize. Were they looking for U.S. dealer/distributor partners? It’s not likely many would pick up customers here, and that may be why Leyard (another Chinese manufacturer) bought Planar last year – everyone knows who Planar is.

I also saw LED walls with pitches as small as .9mm. That’s smaller than the pixel pitch of a 50-inch 1366×768 plasma monitor from 1995! And if anyone continues to go big with their booths, it’s the LED wall manufacturers. (Not like they have any choice!) Leyard’s 100’+ 8K LED wall was a perfect example of why bigger is still better when it comes to a booth.

And Sony’s Cledis 8Kx2K LED wall shows just how much farther we’ve come with this technology, creating what appeared to be a perfectly seamless, pixel-free panoramic LED wall that dazzled with bright, super-saturated color images.

Sony's CLEDIS 8K x 2K LED wall did an excellent job of hiding its seams - and pixels.

Sony’s CLEDIS 8K x 2K LED wall did an excellent job of hiding its seams – and pixels.


Planar (Leyard) is building some amazingly big and bright display walls. And they've got 8K resolution, too, thanks to using 16 2K panels.

Planar (Leyard) is building some amazingly big and bright display walls. And they’ve got 8K resolution, too, thanks to using 16 2K panels.

The Chinese dominance in LED displays shouldn’t be surprising. They’re moving to a similar level in the manufacturing of LCD panels, monitors, and televisions, undermining the Korean manufacturers (who undermined the Japanese, who took our U.S.-based television business away in the 1980s).

In fact, so much of our hardware is fabricated, soldered, and assembled in China and Southeast Asia these days that it should be no surprise prices have dropped as much as they have. Back in the day, a quality line doubler (remember those?) would set you back as much as $5,000 to $8,000. Today, you can buy a compact scaler that works to 1080p and Wide UXGA for a few hundred bucks.

My last trend has to do with the slow migration of video and audio signal distribution and switching away from hardware-intensive platforms based on display interface standards to software-based platforms that use IT switches, encoders, and decoders. Wow, did I spot a lot of those products at the show, even from some previously-vigorous defenders of HDMI-based architectures.

The interest in learning how to move to an “open” IP-type AV distribution architecture must be considerable: I taught a class on AV-over-IP this year at InfoComm and was astounded to see that 185 people had signed up to attend. And there were very few no-shows, as I found out when I had attendees sitting on the floor and standing along the back wall for almost the entire 90-minute class.

You know there's considerable interest in AV-over-IP when these guys show up.

You know there’s considerable interest in AV-over-IP when these guys show up.


RGB Spectrum's new Zio AV-over-IP system has one of the most user-friendly interfaces I've seen to date - touch and swipe to connect video streams.

RGB Spectrum’s new Zio AV-over-IP system has one of the most user-friendly interfaces I’ve seen to date – touch and swipe to connect video streams.

What’s more, a substantial portion of those attendees came from the higher education market segment, and an informal poll revealed that most of them were still upgrading from older analog systems to all-digital infrastructure. In essence, they were telling me that they preferred to skip by HDMI-based solutions and move directly to an IP-type solution.

Hand-in-hand with this discovery came more responses about transitioning to app-based AV control systems and away from proprietary, code-based control that requires specialized programming. Well, there were a few companies showing app-based AV control products in Vegas that had super-simple GUIs; software that just about anyone could learn to use in a few hours.

Throw in the accelerating transition to UHD resolution displays (they’ll largely replace Full HD within a year), and you have some very interesting times in store for the AV industry as this decade winds on…

AV-over-IP: It’s Here. Time To Get On Board!

At InfoComm next week in Las Vegas, I look forward to seeing many familiar faces – both individuals and manufacturers – that have frequented the show since I first attended over 20 years ago. And I also expect to find quite a few newcomers, based on the press releases and product announcements I’ve been receiving daily.

Many of those newcomers will be hawking the latest technology – AV-over-IP. More specifically, transporting video, audio, and metadata that are encoded into some sort of compressed or lightly-compressed format, wrapped with IP headers, and transported over IP networks.

This isn’t exactly a new trend: The broadcast, telecom, and cable/satellite worlds have already begun or completed the migration to IT infrastructures. The increasing use of optical fiber and lower-cost, fast network switches are making it all possible. Think 10 gigabit Ethernet with single-mode fiber interconnections, and you can see where the state-of-the-art is today.

You’ve already experienced this AV-over-IP phenomenon if you watch streaming HD and 4K video. Home Internet connection speeds have accelerated by several orders of magnitude ever since the first “slow as a snail” dial-up connections got us into AOL two decades ago. Now, it’s not unusual to have sustained 10, 15, 25, and even 50 megabit per second (Mb/s) to the home – fast enough to stream Ultra HD content with multichannel sound.

And so it goes with commercial video and audio transport. Broadcast television stations had to migrate to HD-SDI starting nearly 20 years ago when the first HDTV broadcasts commenced. (Wow, has it really been that long?) Now, they’re moving to IP and copper/fiber backbones to achieve greater bandwidth and to take advantage of things like cloud storage and archiving.

So why hasn’t the AV industry gotten with the program? Because we still have a tendency to cling to old, familiar, and often outdated or cumbersome technology, rationalizing that “it’s still good enough, and it works.” (You know who you are…still using VGA and composite video switching and distribution products…)

I’ve observed that there is often considerable and continual aversion in our industry to anything having to do with IT networks and optical fiber. And it just doesn’t make any sense. Maybe it originates from a fear of losing control to IT specialists and administrators. Or, it could just be a reluctance to learn something new.

The result is that we’ve created a monster when it comes to digital signal management. Things were complicated enough when the AV industry was dragged away from analog to digital and hung its hats on the HDMI consumer video interface for switching and distribution. Now, that industry has created behemoth switch matrices to handle the current and next flavors of HDMI (a format that never was suitable for commercial AV applications).

We’ve even figured out a way to digitize the HDMI TMDS signal and extend it using category wire, up to a whopping 300 feet. And somehow, we think that’s impressive? Single-mode fiber can carry an HD video signal over 10 miles. Now, THAT’S impressive – and it’s not exactly new science.

So, now we’re installing ever-larger racks of complex HDMI switching and distribution gear that is expensive and also bandwidth-capped – not nearly fast enough for the next generation of UHD+ displays with full RGB (4:4:4) color, high dynamic range, and high frame rates. How does that make any sense?

What’s worse, the marketing folks have gotten out in front, muddying the waters with all kinds of nonsensical claims about “4K compatibility,” “4K readiness,” and even “4K certified.” What does that even mean? Just because your switch or DA product can support a very basic level of Ultra HD video with slow frame rates and reduced color resolution, it’s considered “ready” or “certified?” Give me a break.

Digitizing HDMI and extending it 300 feet isn’t future-proof. Neither is limiting Ultra HD bandwidth to 30 Hz 8-bit RGB color, or 60 Hz 8-bit 4:2:0 color. Not even close. Not when you can already buy a 27-inch 5K (yes, 5K!) monitor with 5120×2880 resolution and the ability to show 60 Hz 10-bit color. And when 8K monitors are coming to market.

So why we keep playing tricks with specifications, and working with Band-Aid solutions? We shouldn’t. We don’t need to. And the answer is already at hand.

It’s time to move away from the concept of big, bulky, expensive, and basically obsolete switching and distribution hardware that’s based on a proprietary consumer display interface standard. It’s time to move to a software-based switching and distribution concept that uses an IT structure, standard codecs like JPEG2000, M-JPEG, H.264, and H.265, and everyday off-the-shelf switches to move signals around.

Now, we can design a fast, reliable AV network that allows us to manage available bandwidth and add connections as needed. Our video can be lightly compressed with low latency, or more highly compressed for efficiency. The only display interfaces we’ll need will be at the end points where the display is connected.

Even better, our network also provides access to monitoring and controlling every piece of equipment we’ve connected. We can design and configure device controls and interfaces using cloud-based driver databases. We can access content from remote servers (the cloud, again) and send it anywhere we want. And we can log in from anywhere in the world to keep tabs on how it’s all functioning.

And if we’re smart and not afraid to learn something new, we’ll wire all of it up with optical fiber, instead of bulky cables or transmitters and receivers to convert the signals to a packet format and back. (Guess what? AV-over-IP is already digital! You can toss out those distance-limited HDMI extenders, folks!)

For those who apparently haven’t gotten the memo, 40 Gb/s network switches have been available for a few years, with 100 Gb/s models now coming to market. So much for speed limit issues…

To the naysayers who claim AV-over-IP won’t work as well as display interface switching: That’s a bunch of hooey. How are Comcast, Time Warner, NBC, Disney, Universal, Netflix, Amazon, CBS, and other content originators and distributors moving their content around? You guessed it.

AV-over-IP is what you should be looking for as you walk the aisles of the Las Vegas Convention Center, not new, bigger, and bulkier HDMI/DVI matrices. AV-over-IP is the future of our industry, whether we embrace it or are dragged into it, kicking and screaming.

Are you on board, or what?