Posts Tagged ‘High Dynamic Range’

CES 2019 In the Rear View Mirror

I’m not sure when I first started attending CES, but it was back around the turn of the century. My interests then lay primarily in display technologies – televisions, monitors, projectors, and all the gear that interfaced them to things like DVD players, HDTV set-top boxes, and early gaming consoles.

It wasn’t unusual to see manufacturers try to out-do each other in the race for the biggest display or the most pixels. We were wowed by 102-inch plasma TVs (a product that never came to market), 105-inch LCD monitors, “HD” projectors with 1280×720 resolution, upscaling DVD players, line quadruplers, and all kinds of external video signal processors that were designed to clean up standard-definition video, S-video, and analog component video.

Flash forward to 2019, and those times feel like early colonial America. Plasma is gone. “HD” in a front projector means at least 1920×1080 resolution, with an increasing number of home theater models offering 4K resolution. DVD players are fossils now and Blu-ray players have evolved with the times to support Ultra HD resolution.

Not that it matters much. More and more consumers are choosing to stream video content, thanks for faster, more reliable Internet and WiFi connections. Codecs have improved by several generations. The H.264 AVC format was just clearing the drawing board in 2002. Today, we have HEVC H.265, Google’s VP9, and now an even more efficient codec that promises to cut bit rates for 4K content by 50%.

Analog TV interfaces are all gone. It’s either HDMI or DisplayPort, or a streaming connection through WiFi or a Cat 6 cable. Those expensive video processing chips have multiplied in power so many times and shrunk accordingly that they are commonplace in Ultra HDTVs. At CES 2019, new “AI” processors can analyze multiple vectors and aspects of a frame of video and scale, color-correct, gamma-correct, and clean up compression artifacts in a flash.

LG’s got 8K TV covered with both LCD and OLED models.

 

Samsung’s Wall modular LED TV made an appearance again at CES. This time, it measures 219 inches diagonally.

I saw several demos of standard-definition video scaled up to 4K and even 8K TVs and was impressed at just how well these advanced chips work. Unfortunately, there’s lot of potential for mischief with these processors, such as changing the frame rate, gamma, black levels, and even color tone automatically without you asking. That’s progress for ya!

About the only thing that hasn’t changed since the early 2000s is the size of the largest LCD panels. If memory serves, Sharp held the record for many years with that 105-inch beast. Both Samsung and LG eventually wheeled out even larger panels and the record (so far as I can remember) was 120 inches for a VA LCD monitor, shown a few years back by Vizio and also by Samsung. Thing is, none of those products really took off: Today, the largest LCD TV you can buy is Samsung’s new 85-inch 8K offering, with 98-inch models lurking in the wings from LG, Samsung, Sony, and others.

The biggest change I’ve seen in the past decade is how televisions and related products have been de-emphasized at the show. No surprise there – TV prices have collapsed to the point where you can pick up a very nice 55-inch Ultra HD model with HDR support for about $6 per diagonal inch. There are plenty of 65-inch models priced below $1,000 and some 70-inch UHDTVs have dropped as low as $1,200 on sale.

TCL’s XESS “Living Window” TV is supposed to appear as if it’s floating in mid-air.

 

This 65-inch Skyworth UHDTV uses two LCD panels to improve black levels and contrast.

Price drops have been dramatic for both LCD and OLED models. LG just announced special pricing for the next two weeks on 55-inch Ultra HD B8-series TVs ($1500) and 65-inch B8s ($2300). Vizio announced during CES that their 2019 M-series and P-series UHDTV sets will incorporate quantum dots for high dynamic range video, and you can be sure they’ll have aggressive pricing on all models.

Also, not surprisingly, there’s less profit in selling televisions these days, which is why most of the big exhibitors at CES have reduced the footprint in their booths for showing off TVs, allocating more space for everything from refrigerators and washers to smartphones, tablets, small appliances, laptops, and even automotive electronics. Secondarily, many of us analysts and journalists have expanded our coverage to include video encoders, decoders, and signal management systems, video streaming, cloud storage and asset management, and peripheral markets like transportation.

Without further ado, here are some of my highlights from the show.

Sony will offer XBR-Z9G Master-series 85-inch and 98-inch 8K LCD TVs with HDR, complementing their OLED TV lineup.

 

Hisense claims its Adonis 8K display uses micro LEDs for backlights, but they’re more likely “mini” LEDs.

“Yes Virginia, there are 8K televisions!” And CES was awash in them, from LG’s 88-inch OLED to Samsung’s 85-inch QLED 8K. (LG also had 75-inch LCD sets using their NanoCell color filter technology.) Sony showed 85-inch and 98-inch 8K model in their booth to complement their line of 4K OLED TVs. Sharp, which is planning to re-enter the television business in the near future, will offer 60-inch, 70-inch, and 80-inch 8K TVs. TCL, Hisense, Konka, Skyworth, and Changhong also unveiled 8K TV prototypes.

I counted over a dozen different models, including more than a few showing next-generation backlight technology based on “mini” LED arrays. (A few of the demos referred to “micro” LED backlight arrays, but that’s unlikely at this date due to manufacturing challenges.) The advantage of “mini” backlights is more and smaller areas of local dimming, improving contrast and high dynamic range response.

Sharp’s planned re-entry into the television business is intriguing, considering the company’s near-bankruptcy a few years ago and the subsequent purchase of 66% of the company by Hon Hai Precision Industries (Foxconn). Instead of borrowing more money from Japanese banks to stay afloat, Sharp now has Terry Ghou’s huge bankroll to plan its product line and marketing, not to mention a complete line-up of 8K televisions, the BC-60A 8K broadcast camera, an 8K non-linear editing system, and an 8K asset storage and retrieval system (cloud based, of course).

Sharp wants back in to the premium TV business and showed wide range of 8K products, including content streaming.

 

Stream TV networks showed an 8K desktop monitor and his 65-inch autostereo 8K TV. 3D isn’t quite dead yet!

“This will DEFINITELY be the year for 60 GHz wireless!” I’ve lost track of how many 60 GHz wireless video demos I’ve seen over the past decade from companies like Silicon Image and its successor Lattice Semiconductor, DVDO, Qualcomm, and Intel (not to mention the WiFi Alliance). Products come and go (remember the 15 different tri-band WiFi modems from 2016?), but the technology seems to be stuck in a rut.

Maybe 2019 will be different. Keyssa demonstrated near-field connectivity of everything from tablets to TVs and snap-on LED tiles using its KISS technology. The chips are about as big as a deer tick, but the principle is that of coupled energy over a maximum 10mm air gap to transport data in a half-duplex mode at up to 6 Gb/s per lane. To prove the weight-lifting capabilities of this tin titan, Keyssa also built a wireless backplane dock that uses 32 KISS channels to stream 8K video at 96 gigabits per second. (Yes, it IS that fast!)

Several floors up in The Westgate Hotel, Canadian fabless semiconductor company Peraso also has a few millimeter-wave tricks up its sleeve. In addition to 4K wireless USB links, Peraso also showed 60 GHz 802.11ad WiFi access points for high-speed in-room video streaming and super-fast data downloads. At this frequency, radio waves can’t penetrate solid objects, nor is it at all easy to intercept them. That combination provides very robust security, and I’m still puzzled why more manufacturers haven’t adopted the technology.

Did you know you can couple 60 GHz wireless 4K video signals over flexible plastic rods? Keyssa does.

 

This ready-to-buy 60 GHz wireless access point uses chipsets from Peraso.

On the show floor (near its ‘connected beer’ exhibit, I kid you not), Qualcomm had an intriguing demo of super-fast gaming using 60 GHz links from smartphones. There are six channels available in this band, each of which is a little over 2 GHz in size. With light compression, there is near zero latency for gamers. And with steerable antenna arrays, multiple players can work with different screens on the same channels and never interfere with each other.

“Interfaces will get faster. Believe me!” With 8K and HDR looming (not to mention high frame rate video), our display interfaces need to get a heckuva lot faster in a real hurry. Over in the HDMI pavilion, there was a demonstration of Samsung’s Q900R 85-inch 8K TV showing custom 8K video content through an HDMI 2.1 interface built by chip maker Invecas. Given that only Socionext is currently shipping v2.1 TX/RX sets, I had to grill the Invecas rep to verify that “no, you won’t find HDMI 2.1 on the Samsung set currently.” (It’s currently equipped with one HDMI 2.0 interface).

During its press conference on Tuesday, LG claimed that their 2019 8K TVs will “support HDMI 2.1.” Presumably, this means there is some sort of upgrade path for models released earlier in the year, inasmuch as there is still a lot of testing and compliance certification to be done before manufacturers can start rolling out version 2.1. Samsung, for their part, has an upgrade option on the 85-inch model.

Over in the DisplayPort booth, it was announced that DP 2.0 will begin rolling out later in the year. V2.0 raises the per-lane data rate from 8.1 Gb/s to an astounding 24 Gb/s for a total data rate across all four lanes of 96 Gb/s. (Subtract 20% for overhead bits to get the real rate). This is clearly optical fiber territory – I’m not aware of anyone transporting data at this speed over copper links. And while that may seem like a lot of horsepower, keep in mind that an 8K/60 signal with 10-bit RGB color will require about 85 Gb/s to travel.

Invecas demonstrated an 8K home theater, using HDMI 2.1 connections. It will be a while before you see v2.1 on any TVs, though.

 

DisplayPort 2.0 is coming! In the meantime, v1.4 can drive three monitors simultaneously – and with different 4K video on each.

“Taking displays to another level!” Skyworth showed a 65-inch 4K TV using a dual-panel LCD structure. One panel delivers the full-color HDR images while the second panel acts simply as a monochromatic light modulator. In effect, it’s another shutter, allowing the display to achieve OLED-like black levels and very high peak (specular) whites while maintaining a wide contrast ratio. Not a new trick – Panasonic showed a similar approach for a 31.5” HDR 4K monitor a couple of years ago – but this is the first time I’ve seen it in a consumer TV.

In the LG Display booth, among the curved and transparent OLEDs, I found LG’s In-Touch system. Unlike conventional touchscreen film overlays on displays, In-Touch places the touch sensors directly below the LCD glass surface. This results not only in a more sensitive touchscreen, but it’s also a lot more accurate as the gap between the surface and sensors is greatly reduced.

And it appears that the fascination with curved displays has gone the way of 3D. I spotted only one curved 65-inch Ultra HDTV, and that was in the TCL booth. Samsung won an award for its LG was more focused on its premium roll-up/down 4K OLED TVs, a concept first shown last year at CES by LG Display. These roll-up sets don’t have a price yet, but will be part of LG’s Signature OLED line.

Samsung’s 75-inch micro LED TV prototype might have been the only true “micro” shown at CES.

 

Lumens’ .57″ green micro LED display has Full HD resolution for near-to-eye displays. And it’s bright!

Samsung did show a 75-inch class micro LED TV prototype at their Sunday preview event, an interesting demo for a company that apparently wants to get out of the LCD manufacturing business and concentrate on purely emissive LED TVs and displays, going forward. Of all the demonstrations of micro LED, I have no doubt that Samsung’s prototype is the real thing. Keep in mind that we’re taking about tiny LED chips that measure less than 50 micrometers (µm), while “mini” LEDs are in the range of 100 µm to 200 µm.

Lumens demonstrated something a bit simpler but no less important: A .57” green (monochromatic) micro LED display, suitable for head-mounted displays. This device has Full HD (1920×1080) resolution and is capable of brightness levels in excess of 300 nits. Over in the Sands, Kopin showed its 2K OLED near-to-eye display, which is about the size of a quarter. And Vusix demonstrated its Blade AR glasses, which project a small color video image onto the lens surface that isn’t quite as detailed and contrasty a I expected.

I’ll close out this report with a mention of the next-generation video codec for compressing 4K and 8K video. Fraunhofer had a small exhibit that was easy to miss, detailing the Versatile Video Codec (VVC). VVC builds on the coding tree block and unit structure of HEVC H.265 and makes analysis and compression decisions on a more granular level. This codec requires a considerable increase in computing power, but the target of the Joint Video Experts Team (JVET) is to achieve a 50%  bitrate reduction for comparable image quality over H.265. Look for the final standard in 2020.

The Versatile Video Codec can stream 4K content at 2.2 Mb/s that looks as good as H.265 at 5 Mb/s.

 

Audi’s been using red OLEDs in their tailights for some time now. (You didn’t know?)

 

Roll-up TVs are here, thanks to LG. Now you see them, now you don’t!

 

 

 

 

 

Measuring Up With DisplayHDR

For the past 16 years, the High Definition Multimedia Interface (HDMI) has ruled the roost for display connections, pushing aside VGA at first and then DVI on everything from televisions and Blu-ray players to laptop computers and camcorders. It’s evolved numerous times from a basic plug-and-play interface for televisions and AV receivers to a high-speed transport system for 4K and ultimately 8K video. Ironically, HDMI is often the input and output connection for video encoders and decoders that, in theory, could displace it from the market altogether.

But there are other players in the interfacing market, and that would be the folks at the Video Electronics Standards Association (VESA), who developed and periodically update DisplayPort. First launched in 2006, DisplayPort was intended to replace the old analog VGA connector with a newer, 100%-digital version that could handle many times the bandwidth of an XGA (1024×768) or UXGA (1600×1200) video signal.

Other forward-looking features included direct display drivers (no need for a video card), support for optical fiber, multiplexing with USB and other data bus formats, and even a wireless specification (it never really caught on). Like HDMI, DP had its “mini” and “micro” versions (Mini DP and Mobility DP).

In recent years, VESA stayed current by upping the speed limit from 21.6 to 32 gigabits per second (Gb/s), supporting the USB 3.0 Alternate Mode, adding some cool bells and whistles like simultaneous multi-display output, adopting the first compression system for display signals (Display Stream Compression), recognizing high dynamic range metadata formats, and even accepting color formats other than RGB.

Best of all, there continue to be no royalties associated with DP use, unlike HDMI. The specification is available to anyone who’s interested, unlike HDMI. And DP was ready to support deep color and high frame rate 4K video as recently as 2013, unlike HDMI.

However…unlike HDMI, DisplayPort has had limited success penetrating the consumer electronics display interfacing market. While some laptop manufacturers have adopted the interface, along with commercial AV monitors and video cards for high-performance PCs, HDMI is still the undisputed king of the hill when it comes to plugging any sort of media device into a display.

Even long-time supporters of DP have switched allegiances. Apple, known for using Mini DisplayPort on its MacBook laptops, is now adding HDMI connections. Lenovo, another DP stalwart, is doing the same thing on its newer ThinkPad laptops.

One of the many DisplayHDR-certified monitors in VESA’s booth at CES 2018.

But VESA has a few more tricks up its sleeve. Earlier this year at CES, VESA had several stands in their booth demonstrating a new set of standards for high dynamic range and wide color gamuts on computer monitors – specifically, those using LCD technology. DisplayHDR calls out specific numbers that must be achieved to qualify for DisplayHDR 400, DisplayHDR 600, and DisplayHDR 1000 certification.

Those numbers fall into the categories of 10% full white, full screen white “flash,” and full screen white “sustained” operation, minimum black level, minimum color gamut, minimum color bit depth, and black-to-white transition time. With interest in HDR video growing, the DisplayHDR specifications are an attempt to get around vague descriptions of things like color range (“70% of NTSC!”) and contrast ratios that don’t specify how the measurements were taken.

And this is actually a good thing. In the CE world, the UHD Alliance has a vague set of minimum requirements for a TV to qualify as high dynamic range. Compared to the more stringent DisplayHDR requirements, the UHD Alliance specs are equivalent to asking if you can walk and chew gum at the same time. Whereas HDMI version 2.0 (currently the fastest available) can transport an Ultra HD signal with 8-bit RGB color safely at 60 Hz, that’s setting the bar kinda low in our opinion.

In contrast, DisplayPort 1.3 and 1.4 (adds HDR metadata and support for 4:2:0 and 4:2:2 color) aren’t even breathing hard with a 12-bit RGB Ultra HD video stream refreshed at 60 Hz. And that means a computer display certified to meet one of the DisplayHDR standards can actually accept a robust HDR signal. (Note that VESA isn’t choosing sides here – DisplayHDR-certified screens can also use HDMI connections, but signal options are limited by HDMI 2.0’s top speed of 18 Gb/s.) You can learn more about DisplayHDR here.

With HDMI 2.1 looming on the horizon – a new version of the interface that liberally borrows from DisplayPort architecture – VESA will certainly have its work cut out. The accelerated trend to 4K and ultimately 8K imaging will help, as DP can get to the faster data rates more quickly than HDMI. And the DisplayHDR standards aren’t just fluff – they’re also a way to expand awareness of the DisplayPort brand.

High Dynamic Range: It’s Here!

Ever since the launch of high definition television in the 1990s, it seems as if some new ‘bell and whistle’ enhancement comes along every few years. First it was the changeover to flat screen plasma displays in the late 1990s, followed by a shift to 1080p and Wide UXGA resolution in the early 2000s.

The industry transitioned to liquid-crystal display (LCD) panels for TVs and monitors a few years later. UHD (4K) imaging popped into our consciousness in 2012. And of course, 3D made its “once every few sunspot cycles” appearance in 2009, followed by virtual reality last year.

Some of these trends actually stuck, like 4K: Display manufacturers are slowing down production of Full HD (1920×1080) display panels in favor of UHD (3840×2160) as consumers increasingly choose the higher resolution. That, in turn, means that the displays we select for digital signage, classrooms, meeting rooms, and other applications will also be of the 4K variety.

The latest trend to rear its head is high dynamic range (HDR), which is accompanied by wide color gamut (WCG) imaging. In a nutshell, HDR means a greatly expanded range of tonal values that can be shown in still and moving images. Conventional cameras and imaging systems can capture anywhere from 9 to 11 f-stops of light. (Each f-stop increase represents a luminance value twice as bright as the previous one.)

HDR takes that to a higher level by capturing as many as 22 f-stops of light, and reproducing those tonal values becomes a real challenge to displays that employ conventional backlight or illumination systems. Hence, we are now seeing a new crop of LCD TVs with turbocharged backlights to reproduce the extreme dynamic ranges of HDR images. On the emissive display side, organic light-emitting diode (OLED) TVs can also reproduce HDR content, although with lower peak brightness levels.

At NAB 2017, NEC showed this 4K HDR encoder prototype, streaming 77 Mb/s with 99 ms latency.

For some perspective, the venerable CRT display had a peak brightness level somewhere around 29 foot-Lamberts (100 candelas per square meter), which represented close to 100% diffuse white. In an HDR display, that value largely holds, but more intense specular highlights (like the sun reflecting off a pane of glass or the water, or a bright streetlight at nighttime) can hit peaks much, much higher in the thousands of cd/m2 .

And HDR isn’t just about extreme brightness. The entire grayscale is expanded, so we should see more shadow details along with intense specular light sources. When done correctly, HDR images are quite the departure from ‘everyday’ HDTV, and more closely resemble the range of tonal values our eyes can register – with their visual contrast ratio approaching 1,000,000:1.

There are numerous ways to achieve higher levels of brightness. Dense arrays of light-emitting diodes can do it when used in a direct-illumination architecture. However, the favored approach is to employ a special optical film embedded with nano-sized red and green quantum dot particles, stimulated by an array of blue LEDs. 2017 TV models using this approach can achieve peak small-area brightness values of 2,000 cd/m2.

For perspective, consider that an LED (emissive) videowall for indoor use will routinely hit 3,000 cd/m2 brightness with full white images, and you can appreciate just how much of a leap HDR represents over current imaging technology. What’s more significant is how quickly the prices for HDR displays are coming down, particularly as Chinese TV manufacturers enter the marketplace.

Just prior to the Super Bowl – the best time to score a deal on a new TV, by the way – it was possible to purchase a 55-inch ‘smart’ Ultra HDTV for just $499 from a Tier 1 manufacturer. And a 65-inch model with basic HDR (static metadata) could be had from a Chinese brand for less than $700, while a Tier 1 HDR model of the same screen size was less than $900.

I mentioned wide color gamut earlier. It stands to reason that if a camera can capture a much wider range of luminance values, it can also record a much wider range of color shades. And that’s exactly what winds up happening. With the current 8-bit color system widely in use for everything from broadcast and cable television to Blu-ray discs and streaming media, a total of 16.7 million colors can be represented.

With HDR and WCG, the playing field is expanded considerably and now requires 10 bits per color pixel, resulting in 1,073,741,800 colors – over 1 billion color shades! That’s too much heavy lifting for LCD displays that use white LEDs with color filters, but it’s within reach of quantum dot LCDs and OLEDs.

The availability of HDR/WCG content has also forced a speed upgrade to display interfaces. HDMI 1.3/1.4 simply can’t handle a 4K HDR signal, so we must use HDMI 2.0 to do the job. And even version 2.0 is barely fast enough – if the 4K video signal uses lower color resolution (4:2:0, 4:2:2), then it can transport HDR signals as fast as 60 Hz. But switch to RGB (4:4:4) color mode – such as we’d see with 4K video from a computer video card – and HDMI 2.0 can’t pass a 60 Hz signal with anything more than 8-bit color.

On the DisplayPort side, things are somewhat more accommodating. Version 1.2 (the current one) can pass a 3840x2160p/60 signal 10-bit RGB (4:4:4) color, but nothing more. The newest DP version – 1.3 – raises its maximum speed to 32.4 Gb/s, which makes imaging 12-bit and even 16-bit 4K HDR content possible. However, version 1.4 is required to recognize the HDR ‘flags’ that travel with the content and must be passed on to the display. (HDMI uses extensions for HDR and WCG, with ‘a’ used for static HDR metadata and ‘b’ used for dynamic metadata.)

Marketing folks have a field day confusing people with new display tech and apparently they’re going to town with HDR. We’re now hearing about “HDR-compatible” products, particularly in signal interfacing. Nothing to see here, folks – if the signal distribution and switching equipment is fast enough to pass the required clock rate and hands over HDR metadata (CTA.861.3) to the display without alteration, then it is indeed “HDR compatible.” Simple as that.

I return to my original question: Will HDR have an impact on our industry? The answer is an emphatic “yes!” There are many customers that would realize a benefit from HDR imaging – medical, surveillance, military, research, virtual reality, and simulation verticals will embrace it pretty quickly, and others will follow.

“HDR” Is Coming To Your Next TV. So What, Exactly, Does That Mean?

Thinking about buying a new Ultra HDTV? You might want to wait a few months…or maybe a year. HDR is coming!

I know, I know. It seems like the new TV you just bought is already obsolete (although it really isn’t; just a little behind the times.) You can’t keep up – first, it was 720p plasma, and the market move to 1080p. Then it was 1080p LCD, followed by super-thin LCD televisions. Then “smart” TV and 3D (although the latter died a quick, merciful death).

And now, it’s Ultra HD. And OLED TV. When will it stop? Answer – it won’t, not with overcapacity for panel manufacturing in Asia and plummeting retail prices for bigger screens. In fact, as I’ve pointed out numerous times before, Ultra HD and Full HD televisions have essentially reached price parity. In many cases, an extra $100 will buy you Ultra HD resolution in the same screen size. Or $50 will get you an Ultra HDTV with five fewer inches of screen size.

The way things are heading, your next television purchase is almost certain to be an Ultra HDTV, provided it’s 50 inches or larger and you buy it no earlier than December. By then, prices will have fallen so much on UHD models that it wouldn’t make any sense to invest in a newer Full HD model. Not only that, but retailers are already allocating a larger percentage of inventory to Ultra HDTVs, cutting back on the number of Full HD models they stock.

There’s another reason you’ll want to wait until December (or later) to pick up a new Ultra HDTV, and that’s HDR – or, more specifically, high dynamic range.

HDR is the latest enhancement to come to television. Unlike 3D, you don’t need any special eyewear to see it. And the difference between standard televisions and HDR sets is dramatic – much brighter whites and higher contrast ratios on LCDs, greater shadow detail and brighter highlights on OLEDs. In other words, television pictures that approximate what your eyes see every day.

In the world of photography, we measure exposures in “stops” of light, like f2.8, 4, 5.6, 8, etc. Think of standard dynamic range as something in the range of 8 to 10 stops. In comparison, HDR can represent a minimum of 15 stops of light, with each additional stop being twice as bright as the previous one. (Some advanced HDR cameras can capture 20 stops of light!)

It’s hard to describe the concept of HDR with words, but trust me; when you see it, you’ll know it. Combined with Ultra HD resolution, it is an entirely new TV viewing experience than anything you’ve seen before. Even plain vanilla Full HDTV looks different with HDR content.

Hisense compared HDR on OLED TVs to their

Hisense compared HDR on OLED TVs to their “ULED” high dynamic range system that uses quantum dots.

 

OLEDs can do HDR, too. Here's a 65-inch LG UHDTV showing colors encoded to the new, wider BT.2020 color space.

OLEDs can do HDR, too. Here’s a 65-inch LG UHDTV showing colors encoded to the new, wider BT.2020 color space.

HDR has become such a big deal that a good portion of the Day 2 session at the recent Hollywood Post Alliance Technology Retreat was devoted to this topic, with a couple dozen speakers covering all aspects of capture, post, mastering, and distribution to the home. And to be honest, not many of these experts know how it will all work in the end, especially when it comes to the consumer viewing experience.

So, what do you need to watch HDR? First off; your TV must have some way of reproducing the high dynamic range signal, which means the basic white LED backlight with color filters used by just about every garden-variety LCD TV won’t work. Instead, you’ll want to look for LCD televisions using enhanced backlighting technology like quantum dots.

Quantum dots (QDs) are tiny nanocrystalline chemical compounds that emit high-intensity color light when stimulated by photons, usually from blue or ultraviolet light sources. (That’s the “quantum energy” effect.) Several different companies manufacture quantum dots – QD Vision makes them in light pipes for thin LCDs, while Nanosys and 3M have joined forces to produce a QD film layer for LCD displays.

Presently, Samsung (S-LCD), Vizio, and Sony (certain Triluminous models) sell Ultra HDTVs with quantum dot technology, and are soon to be joined by TCL and Hisense. LG has also shown LCD TVs with quantum dot technology, but they have a trick up their sleeve – organic light-emitting diode (OLEDs) televisions.

OLED technology can also reproduce HDR signals. LG’s white OLED emitters work with color filters in a red-green-blue-white stripe to achieve high brightness and strong color saturation, easily achieving the 15-stop threshold. While OLEDs can’t hit the peak brightness levels of HDR LCDs (800 nits or more), they do much better coming out of black and reproducing very low luminance steps – something that LCDs can’t do without tricks like dynamic backlight dimming and contrast/black level manipulation.

TCL is also shipping Ultra HDTVs with quantum dot backlights from QD Vision to display HDR content.

TCL is also shipping Ultra HDTVs with quantum dot backlights from QD Vision to display HDR content.

 

As of this writing, only Samsung is shipping a UHD Blu-ray player, and it can also play back UHD content.

As of this writing, only Samsung is shipping a UHD Blu-ray player, and it can also play back UHD content.

At the 2016 CES, the Ultra HD Alliance released their specifications for “premium” Ultra HD, a/k/a HDR. The sets must have a minimum resolution of 3840×2160 pixels and reproduce HDR signals using the SMPTE ST2084 standard, with 10 bits per pixel minimum. (The current Blu-ray format, along with broadcast cable, satellite, and streaming TV services, relies on 8-bit color formatting.)

For LCD Ultra HDTVs, the specification calls for a level of black no higher than .05 nits (it can be lower) and a minimum brightness of 1000 nits. For OLED TVs, the black level must be .0005 nits (no higher) and white has to hit 540 nits. If you‘re interested in the resulting contrast ratios, it would be 20,000:1 for LCDs and over 1,000,000:1 for OLEDs.

Hand-in-hand with HDR is a new, wider gamut of colors (WCG) known formally as ITU Recommendation BT.2020. The “2020” color space is quite a bit larger than the current ITU Rec.709 color space that came into use with digital TV. With this new space, you’ll see brighter, more saturated greens and reds and over a billion shades of color. (8-bit color is limited to 16.7 million shades.) And to reproduce those shades of color, you need more horsepower under the hood. (Hence; quantum dots and OLEDs.)

Sony had demonstrations of both HDR and wide color gamut (WCG) video in their CES booth.

Sony had demonstrations of both HDR and wide color gamut (WCG) video in their CES booth.

 

Technicolor licenses the RCA brand, and this 65-inch LCD with quantum dots supports the parent company's HDR format.

Technicolor licenses the RCA brand, and this 65-inch LCD with quantum dots supports the parent company’s HDR format.

What about content? New standards have been released for HDR Blu-ray discs that follow the UHD Alliance Premium specs – 10-bit color, 3840×2160 resolution, and BT.2020 color space representation. In the Samsung booth at CES, a shelf display contained more than 100 Blu-ray movie packages that have been or will be mastered with HDR and WCG. Some of those titles are available now to play back on Samsung’s UBD-K8500 player ($350) or Panasonic’s DMP-UB900 (no price yet). Expect BD players from LG and Sony to make an appearance this year, too.

But the question now is the relevance of optical media. Numerous studies have shown that rentals of Blu-ray discs have been in decline for some time, and BD sales don’t make a dent in the ever-growing volume of transactional video-on-demand, streaming, and digital downloads.

The good news is that HDR content can be streamed or downloaded, although your Ultra HDTV or media player will likely require support for a new video compression/decompression (codec) standard, High Efficiency Video Coding (HEVC) H.265. Many new Ultra HDTVs support this standard. Google’s VP9 and VP10 codecs, used with YouTube 4K content, may also support HDR in the future.

And what about flavors of HDR? Right now, the system getting the most attention is Dolby Vision, which got out of the gate early and is now implemented on Vizio, TCL, Sony, and Philips HDR LCD Ultra HDTVs. LG announced at CES that they would also support Dolby Vision on their premium Ultra HD OLED TVs. Another system has been proposed by Technicolor and it appears that TV manufacturers will support it as well.

The HDMI 2.0a standard supports CTA 861.3 HDR metadata.

The HDMI 2.0a standard supports CTA 861.3 HDR metadata.

 

DisplayPort version 1.4 supports HDR (4K/120 and 8K/60), including 4:2:0 and 4:2:2 formats. It's also compatible with CTA 861.3.

DisplayPort version 1.4 supports HDR (4K/120 and 8K/60), including 4:2:0 and 4:2:2 formats. It’s also compatible with CTA 861.3.

The trick is compliance with the CTA 861.3 standard for reading and understanding HDR “metadata” that will be encoded with the HDR movie or TV program. This metadata will travel through the HDMI or DisplayPort interface in what’s called an “info frame” and the Ultra HDTV should reproduce it correctly. For streaming content, HDR metadata will be embedded in the program and read by the TV on the fly.

At CES, both Samsung and LG showed HDR Ultra HD content as a broadcast signal, using the new ATSC 3.0 standard and a UHF TV channel. Not many people paid much attention to this demo, but it was significant that HDR content can be broadcast as well as streamed. Yet another HDR format, hybrid log gamma, has been proposed by the BBC and NHK as a way to transmit one signal with both SDR and HDR content, letting the compatible Ultra HDTV show it in the appropriate format.

We already have several precedents for this piggy-back backward-compatible approach, such as the NTSC color “burst” signal added to black-and-white television transmissions in the 1950s and the FM stereo sub-carrier that also appeared in the late 1950s. Viewers with older Ultra HDTVs (which wouldn’t be that old, trust me) would simply see an SDR signal, while newer sets would expand the dynamic range at the high (brighter) end to achieve HDR.

In the Samsung booth, you could watch Ultra HD content with HDR as broadcast over the air...

In the Samsung booth, you could watch Ultra HD content with HDR as broadcast over the air…

 

...or you could see it streaming from YouTube.

…or you could see it streaming from YouTube.

Now, a lot of what I’ve just described is still in the building stages. Only a handful of HDR Ultra HDTVs are available right now, and only Samsung’s HDR Blu-ray player is on store shelves. I don’t know of any streaming content providers that are formatting programs in HDR, although Netflix and Amazon Prime are streaming 4K video. There aren’t any 4K cable channels at present, nor are any broadcast networks transmitting 4K shows.

But they’ll all catch up over time. They key is to have an Ultra HDTV that supports HDR and WCG playback, preferably one with both HDMI 2.0a (HDR) and DisplayPort 1.4 inputs. The former interface is already supported, although on a limited basis, while the latter was just announced a week ago.

And that brings me back to my original premise – if you are considering the purchase of a new Ultra HDTV, you’d be smart to wait until the end of the year or even until mid-January when TV prices are historically their lowest. And check to make sure your new set supports HDR through ALL inputs, not just the HDMI connection.

By then, you’ll have a much larger menu of HDR content choices, and of course you can still enjoy watching SDR 4K content. (And by then, you’ll see that big-screen Full HD sets have largely disappeared from store shelves anyway!)