Posts Tagged ‘HDR’

CES 2017 In The Rear View Mirror

Overheard on the show floor, at the end of Day 3: “Why do I have to come back to Las Vegas every year? I didn’t do anything wrong.”

This year’s CES was one of the earliest I’ve attended, starting right after the first of the year with two days of press conferences (I attended just one) and four days of exhibits (three days were plenty for me), scattered all over Las Vegas from the main convention center to the Sands Expo Center, the Venetian Hotel, The Mandalay Bay, and numerous other off-site meeting places.

Turnout according to the CTA was strong, exceeding 160,000. And the exhibit halls were full up. Automobile manufacturers and audio companies camped out in the north hall, while the big names in consumer electronics staked their claims in the center hall, leaving the upper and lower south hall exhibit spaces to drones and VR brands, along with a slew of Taiwanese and Chinese manufacturers and trading companies you’ve never heard of.

It’s a lot to take in over the four days, but I managed to cover all of the halls and make it over to the Sands for a brief visit. Some colder-than-usual weather (with sleet and even hail mixed in) had people scurrying to get around, and the availability of Uber and Lyft drivers was erratic, to say the least.

Still, I came back with over 1,000 raw photos and a pile of videos that I’m still editing as this is being written. Selected highlights and trends observed at the show will follow shortly, but let me start with a few general observations. First off, this was a very laid-back CES. Ground-breaking announcements were few and far between, as were advanced technology demos.

Most of the things I saw this year had been introduced at prior shows and were simply refinements. Very little of what I saw was unexpected, and I had even predicted some of the products and trends. (It’s just a matter of connecting the dots over time.)

Sony's back in the OLED TV game with this 77-inch 4K monster (panel by LG Display). There are 65-inch and 55-inch models, too.

Figure 1. Sony’s back in the OLED TV game with this 77-inch 4K monster (panel by LG Display). There are 65-inch and 55-inch models, too.

 

LG's Signature

Figure 2. LG’s Signature “Wallpaper” OLED TV appears to float atop a large piece of glass…and it’s super-thin, too.

In the world of displays, there were ample demonstrations of quantum dot (QD) technology for backlighting televisions and computer monitors. Another major manufacturer is now on board with organic light-emitting diode (OLED) televisions, and we’re seeing the beginnings of ‘pure’ LED-based displays that use fine pitch RGB elements.

Interest in robots has spiked considerably, from table-top versions that help you wake up in the morning to models that can guide you through an airport to your flight and even check on the departure time and gate. Other robots can sweep the floor and perform mundane tasks, returning to their charging stations automatically. There was even a robot that could see and pick up objects, and some rudimentary demos of ‘learning’ robots were also on hand.

Automobiles are a BIG part of the show, particularly when it comes to all-electric models with varying degrees of autonomy. There were plenty of demos of self-driving cars and even one that can detect your emotions and physical state. Other eye-poppers included entire cars that were 3D-printed and cars with VR headsets for driving. (That last one is borderline nuts, if you ask me.)

And of course there were hundreds of examples of Internet of Things (IoT) connectivity: Smart refrigerators and washer/drier combos. Smart lighting. Smart cars.  Small smart appliances. Smart scooters. For that matter, just about anything in the home or business can be connected to the Internet for monitoring and control. In some cases, all that’s needed is a plug-in USB stick. In other cases, it’s a software and hardware installation.

What follows is a somewhat random listing of show highlights. These are products or trends I felt significant enough to report on. Some were shown on the floor; others required a private visit to a meeting room or hotel suite. A few of them need to be seen in person to appreciate their significance, and if you make it to the NAB or InfoComm shows, there’s a good chance of that happening.

Panasonic introduced four new Ultra HD Blu-ray players at CES (eith and without WiFi), but oddly enough, they still aren't selling this beautiful 65-inch 4K HDR OLED TV in the USA to go with them...

Figure 3. Panasonic introduced four new Ultra HD Blu-ray players at CES (eith and without WiFi), but oddly enough, they still aren’t selling this beautiful 65-inch 4K HDR OLED TV in the USA to go with them…

 

Samsung's new ultrawide QLED PC monitor has spectacular color rendering from quantum dots.

Figure 4. Samsung’s new ultrawide QLED PC monitor has spectacular color rendering from quantum dots.

Light-emitting diodes (LEDs) are becoming the go-to platform for generating photons. Doesn’t matter if it’s for your TV (OLEDs, WLEDs with quantum dots), home and office lighting, dashboard indicators, or stadium signs. A new generation of so-called “micro” LEDs has come to market and is finding its way into digital signage, resulting in super-fine-pitch emissive displays with high dynamic range and very wide color gamuts.

On the television side, LG continues to make improvements to its line of OLED 4K TVs, showing models as large as 77 inches. They’ve even come up with a ‘wallpaper’ design that suspends the display on a clear glass surface, and the thickness of these displays has dropped below 5mm (that’s about ¼ of an inch). OLEDs can also flex, making them perfect for installation in cars, trucks, trains, planes – anything that moves.

In the LG Display booth, we saw prototype OLED dashboards, including a virtual instrument cluster with a transparent OLED (very cool!) overlaid on an LCD display for a 3D gauge effect. We also saw two-sided OLEDs as well as a method to use the front surface of an OLED TV as a speaker. It worked well, but by the laws of physics won’t have a wide field of dispersion.

Sony has also embraced OLED TVs with a flourish, buying panels from LG and using their own video processing in 77-inch, 65-inch, and 55-inch models. (They’re also using the front surface as a speaker.) The company is also a leader in micro LED technology; dazzling crowds with their massive 8K x 2K CLEDIS LED display made up of hundreds of seamless LED tiles. Look for more companies to embrace micro LEDs, and don’t be surprised if they start showing up in televisions by the end of the decade.

LG's 27-inch PC monitor has an amazing 5120x2880 pixels of resolution - that's right, 5K.

Figure 5. This 27-inch PC monitor from LG has an amazing 5120×2880 pixels of resolution – that’s right, 5K.

 

Hisense is into quantum dot technology and showed a full line of 4K HDR LCD TVs, driven by Nanosys QD science.

Figure 6. Hisense is into quantum dot technology and showed a full line of 4K HDR LCD TVs, driven by Nanosys QD science.

 

Even Qualcomm is getting into the HDR game, showcasing the processing power of their Snapdragon CPU to drive displays.

Figure 7. Even Qualcomm is getting into the HDR game, showcasing the processing power of their Snapdragon CPU to drive displays.

For nearly a decade, the standard illumination system for LCD TVs and monitors was clusters of white LEDs and RGB color filters; either using edge illumination and a light waveguide plate or direct illumination. A few years ago, we started to see a new way to produce more horsepower with brighter, more saturated colors and high dynamic range: Blue LEDs harnessed to quantum dots.

Now, everyone’s in the game. Samsung made the biggest splash at CES when they rolled out their “Q” line of TVs, using what they call Q-LEDs (quantum LEDs). But hold on – what Samsung calls a Q-LED isn’t really. It’s just an improved quantum dot that’s more efficient while the original Q-LED, developed by QD Vision, is a true electroluminescent device that would revolutionize displays (and probably run OLEDs out of business).

Nevertheless, Samsung dazzled with a full line of 4K quantum dot LCDs, as did Chinese manufacturers Hisense and TCL. Both companies are making a major push into the U.S. television market (Hisense sponsors a NASCAR team), and TCL is one of a handful of vertically-integrated TV manufacturers – from raw panels to finished sets. Other Chinese brands (Haier, Skyworth, Changhong, and Konka) showed 4K TVs with high dynamic range, but they don’t have the presence quite yet on this side of the Pacific.

Front projection is still very much in the game. LG, Sony, Hisense, and Changhong all showed an ultra-short-throw laser projector for home theater use that can light up a 100-inch (diagonal) screen – all with 4K image resolution. Somewhat lost in the translation was the ability to display improved dynamic range and more saturated colors (what Changhong called “flame red and pacific blue”), but there’s no question that this is a viable alternative to large screens, like the 120-inch 4K LCD TV shown by LeEco in their booth.

Unusual LCD and OLED sizes and aspect ratios continue to be popular. Samsung showed what they stated is the first quantum dot-equipped desktop monitor, a 34-inch curved model that claims 125% coverage of the sRGB color gamut and has a maximum refresh rate of 100 Hz. BenQ also showed an HDR LCD monitor using an improved panel design and coupled it with DisplayPort 1.3 (HBR3), streaming content at a maximum of 32 Gb/s from source to screen. And LG exhibited a spectacular 5K LCD monitor (5120×2880 resolution) that supports USB 3.0 Type C and Thunderbolt connections.

Figure 8. Although LG Display does a ton of work with OLEDs, they aren't leaving LCDs behind. Their new Nano Cell technology greatly improves color rendering, saturation, and dynamic range using nanoparticles smaller than 1 nanometer.

Figure 8. Although LG Display does a ton of work with OLEDs, they aren’t leaving LCDs behind. Their new Nano Color II technology greatly improves color rendering, saturation, and dynamic range using nanoparticles smaller than 1 nanometer.

 

Witrh Keyssa's KISS 60 GHz wireless dock, you won't need a DisplayPort (or HDMI) cable to your TV.

Figure 9. With Keyssa’s KISS 60 GHz wireless dock, you won’t need a DisplayPort (or HDMI) cable to your TV.

So how do we interface all of these displays? The big news for HDMI at the show was version 2.1, which increases the overall data rate to 48 Gb/s using speed improvements to the physical data rate per lane, plus expansion to a fourth lane and the adoption of Display Stream Compression – all the while retaining the same 19-pin connector as before (a neat trick, if you ask me). Now, will they announce a standard for native optical fiber interfacing?

Lattice Semiconductor, the parent company of HDMI, continues to dabble in 60 GHz wireless connectivity with their SNAP close-proximity wireless interconnect. As presently configured, it can support the same maximum data rates as HDMI 1.3/1.4 (10.2 Gb/s), so it can transport 4K video in the RGB (4:4:4) format at a maximum frame rate of 30 Hz, or transport 4L/60 4:2:0 video.

Over in the VESA booth, Keyssa showed their Kiss 60 GHz wireless solution, docking an Amazon Kindle tablet to stream 1080p content to a large TV. Both SNAP and Kiss utilize multiple in, multiple out (MIMO) antenna arrays and have similar data rates around 6 Gb/s upstream and downstream. What was different about Kiss is that it was making a wireless DisplayPort connection, not HDMI.

DisplayPort is also undergoing upgrades. Demos were shown of 120 Hz video output using a high bit rate 3 (HBR3) connection; maxed out at 8 Gb/s per lane. VESA also showed HDR through DP, along with a conversion to HDMI 2.0b for HDR televisions. Nearby, semiconductor designer Hardent demonstrated an improved version of Display Stream Compression, using 2:1 and 3:1 ratios. They are now venturing further by testing 4:1 DSC and its impact on latency, which with 3:1 packing amounts to just a few picture lines.

HDMI LIcensing showed off HDR 4K content with the new version 2.1 HDMI interface, which had its maximum speed raised to 48 Gb/s across four lanes.

Figure 10. HDMI Licensing showed off HDR 4K content with the new version 2.1 HDMI interface, which had its maximum speed raised to 48 Gb/s across four lanes.

 

Kopin's 2K x 2K minature OLED display is designed for heads-up augmented reality applications - and it looks great.

Figure 11. Kopin’s 2K x 2K minature OLED display is designed for heads-up augmented reality applications – and it looks great.

 

Figure 12. AR headgear is finally getting lighter, although still bulky.

Figure 12. AR headgear is finally getting lighter, although still bulky.

Over in the Westgate Hotel, Canadian fabless chip company Peraso unveiled the next generation of their 60 GHz wireless USB chipset, using the 802.11ad WiFi standard. In their tests, a 220 MB video file downloaded from a laptop through an 802.11ad router to another laptop in about 8 seconds (try that at home!). It’s also possible to stream wireless video in real time over USB this way.

Both Lattice and Peraso see potential for 60 GHz wireless with virtual reality (VR) and augmented reality (AR) headsets as a solution to the annoying, bulky and heavy cable bundles that go with the territory. Qualcomm, which had an enormous exhibit of 60 GHz products last year including twelve different tri-band WiFi modems and a smartphone (Letv), dialed it back this year with a modest exhibit of high-speed data and file exchange using their Snapdragon processor.

On the control side of things; you name it, it was connected to the Internet, from doorbell cameras and RFID locks to water sprinklers, shades, lights, thermostats, and major appliances. Samsung, LG, Hisense, Haier, and others exhibited interactive refrigerators with built-in LCD screens that can show video (play back recipes while you’re cooking or baking), keep track of what’s in the fridge and how old it is, prepare shopping lists and order groceries automatically (you know Amazon has a hand in that), and work as a whiteboard or virtual clipboard for leaving notes and keeping track of your schedule(s).

LG’s “knock” LCD refrigerator screen turns transparent when you tap it to see what’s hiding on the right side shelves. (Lots of potential for mischief there!) Samsung’s models will actually talk to you: You can ask the refrigerator to go out on the Internet and find a recipe and then read it back as you prepare the food. Another cool appliance, an induction oven, was shown by Panasonic. You can place everything for one meal – main course and sides – on one plate, put it in the oven, and everything is correctly heated and cooked without burning.

Figure 13. Samsung's OLED smart watches can change to show any watch face configuration you like.

Figure 13. Samsung’s OLED smart watches can change to show any watch face configuration you like.

 

Figure 14. Corning apparently woke up and smelled the coffee! All of the glass in this car - windshield, mirrors, light covers, etc. - is made from the company's tough, durable, and scratch-resistant Gorilla Glass. (Why didn't they think of this earlier?)

Figure 14. Corning apparently woke up and smelled the coffee! All of the glass in this car – windshield, mirrors, light covers, etc. – is made from the company’s tough, durable, and scratch-resistant Gorilla Glass. (Why didn’t they think of this earlier?)

I’ll close out by talking about robots and autonomous cars. Machine learning is a popular topic among scientists and we’re now seeing it come to fruition. Canon showed an assembly robot that can actually see; looking for and finding parts on a table, picking them up and putting them in the correct place. Toyota’s YUI car actually senses your emotions while you drive, along with your heart rate. It can automatically suggest places to eat, a movie for a cranky child, or simply takeover driving while you catch a cat nap behind the wheel. And LG featured a guide robot that will roll up to you in an airport, scan your boarding pass, tell you the flight departure time and gate and escort you to your destination.

Granted; these are somewhat exotic examples of machine learning. But on a more mundane level, you can now design a control system that will use face recognition to unlock and enable operation of devices in your home, school, and business. Face recognition will also work in a car dashboard, as shown by Mitsubishi and others, and real-time displays will update you on weather, time, road and traffic conditions, and even suggest alternate routes.

That’s it! I’ve barely scratched the surface of what I saw at the show, and will have more posts after I have some time to gather my thoughts. (And look at that – I never once mentioned drones!)

Ultra HDTV, HDMI 2.0, and HDCP 2.2 – Oh, What A Tangled Web We Weave…

A few days ago, I received an email from the president of an AV products manufacturer. He had purchased a Samsung UN65HU8550 65-inch Ultra HDTV back in 2014 and decided to take the plunge into Ultra HD Blu-ray.

Previously, he had been using an upscaling Blu-ray player to achieve 3840×2160 resolution, but now he wanted the real thing. So, he visited his local Best Buy and picked up Samsung’s UBD-K8550 UHD Blu-ray player, took it home, and connected it to one of the HDMI inputs on his UHDTV.

Sounds simple, right? Except that it didn’t work. The UHD disc spun up, started to play, and then a message was displayed that the player would down-convert to 1080p resolution because it didn’t detect support for HDCP 2.2 (the newest and most aggressive form of copy protection for optical disc media).

To him, this made no sense whatsoever. (Me, too!) Here he was, playing an Ultra HD Blu-ray disc, from a Samsung Ultra HD BD player, into a Samsung Ultra HDTV – and it wouldn’t work. I advised him to make sure he was truly using an HDMI 2.0 input (sometimes labeled as such, or color-coded).

He tried all of the inputs, including the MHL input that is supposed to be compliant with HDCP 2.2, but no luck. Again, the disc would spin up, and then display the same error message. (By the way, HDMI 1.3/1.4 inputs can also support HDCP 2.2.)

Another trip to Best Buy resulted in the purchase of Philips’ BDP7501 Ultra HD Blu-ray model, which was then connected to the Samsung TV and – voila! It worked, playing back in true 2160p resolution.  That is; only when connected directly to the Samsung TV, and NOT through his existing Denon AVR (which likely doesn’t support HDCP 2.2 key exchanges on any of its HDMI ports).

Some quick checks on the Internet showed this wasn’t an isolated problem – others had purchased the same TV, or different screen size variations of it, and were unable to watch 4K movies from the Samsung player. One comment I read talked about going so far as to buy an HDCP 2.2 to HDCP 1.4 converter, a product I wasn’t even aware existed. And apparently, it worked! (Warning: This product may be illegal to purchase as it alters a copy-protection process. I’m only providing the URL as a reference.) (http://www.hdtvsupply.com/hdcp-2-2-to-hdcp-1-4-converter.html)

The next step was to check in with my friends at Samsung, who responded that an upgrade kit would fix the problem. It’s called the SEK3500U One Connect Evolution Kit, and attaches to your Samsung 4K TV through a separate connector on the side panel.  This $400 box – which resembles a thin Blu-ray player – provides four HDMI 2.0 inputs, all up to speed with HDCP 2.2 support, HDMI 2.0a compatibility for high dynamic range playback, and improved color rendering, according to several Amazon reviews I read. (https://www.amazon.com/Samsung-SEK-3500U-ZA-Evolution-Kit) Samsung also commented that frame rates may play a part in the problem, as the Blu-ray Disc Association HDR specification for HDMI 2.0a calls for 2160p60 playback with 4:4:4 color, and that using a lower frame rate might fool the UHDTV into down-converting to 1080p resolution.

All of this just confirms my continued advice to my friends and colleagues: “Wait just a little bit longer before you buy a 4K TV.” Too many things are still in a state of flux on the manufacturing side, not the least of which is support for multiple high dynamic range formats. And the issues with HDCP 2.2 support are frankly, just ridiculous at this point: The standard’s been out for a few years, and it will be used exclusively with all HDMI inputs on Ultra HDTVs.

Another takeaway from this is the slow and steady move away from optical disc delivery of 4K movies and TV shows to streaming connections. The protocols for copy protection are a bit different for streaming, but at least the underlying architecture is standard across all platforms (some sort of common streaming protocol like RTSP, carrying MPEG4 H.264 or HEVC H.265 / VP9 with IP headers) and can be easily updated with software.

Given the continual increase in home broadband speeds – especially in metro areas – 4K streaming is fast becoming a realistic option. Granted, the image quality at 15 – 20 Mb/s won’t be as good as a file coming off an optical disc at 100 – 110 Mb/s, but as we’ve seen repeatedly, the vast majority of home viewers continue to choose convenience and price over quality. That may be one reason there are only three Ultra HD Blu-ray players on the market today: How many people are going to spend $300 – $400 – $500 for one?

As I write this, the SEK3500U is on its way, and my colleague will soon be enjoying true Ultra HD movies like he should have been from the start. I suppose the $400 cost is a small price to pay if you’ve already shelled out a few thousand dollars for an Ultra HDTV, but it would irk me to no end to be in that situation. (You know what they say about the “leading” edge often being the “bleeding” edge.)

To summarize; my advice to readers remains the same as it has been. If you are thinking of buying a new Ultra HDTV – like me – WAIT until next spring, or at least until Super Bowl time. Not only will you see lower prices, but you’re more likely to have all of the bugs out of the system – and you’ll be able to score a good deal on a set that can show high dynamic range content, too; certainly supporting two or more of the new HDR formats.

And if you just gotta have an Ultra HD Blu-ray player? Those prices will have come down, too. A quick check on Amazon shows the UBD-K8500 currently available for $317.99, while the Philips BDP7501 will cost you $279.99.  (Panasonic’s DMP-UB900 player wasn’t shipping at the time this article was written.)

Caveat emptor….

 

Samsung Moves Front & Center With HDR

Last Wednesday, I was one of a group of journalists, engineers, and other technical types sitting in on a presentation about high dynamic range (HDR) TV. The location was Samsung’s sparkling-new product showcase in lower Manhattan at 837 Washington Street, and the presenters ranged from Samsung execs to well-known industry consultants, including Florian Friedrich of AVTOP, Steve Panosian of Samsung, Kevin Miller from ISF, Gerard Catapano from Samsung QA Labs, and Jason Hartlove of Nanosys.

THE NEXT BIG THING

You’d have to be living under a rock not to have heard about high dynamic range television by now. Along with Ultra HD resolution, HDR is the next big thing in TV displays, along with a new, wider color gamut, and eventually high frame rate video.

The transition away from mature Full HD (1920×1080) display technology to Ultra HD is happening much faster than most people expected. The costs of manufacturing LCD panels for televisions have absolutely plummeted in the past couple of years; so much that there is at best a $50 to $100 price delta between same-size 1080p and 2160p TV models.

In fact, we will start to see major TV brands dropping 1080p models altogether in larger screen sizes; possibly as soon as December. Sales experience is showing that customers take the upgrade to 4K more often than not when buying sets measuring 55 inches or larger, which is good news for retailers.

And that’s “qualified” good news, as worldwide sales of televisions have been in decline the past four years. The double-digit annual growth of Ultra HDTV sales are keeping things from getting worse and leading everyone in Japan, Korea, and China to focus on 4K and leave increasing numbers of sales of 1080p sets to the bargain brands.

But quadrupling the picture resolution by itself isn’t enough to turn the tide. Hence, we now have HDR, which can produce images containing peak brightness levels that are 10x higher than what we used to see on our old tube HDTVs. (Remember those?) And the colors represented on these displays are also much more saturated and intense, thanks to advancements in illumination technology.

Back in the early days of high definition television, we were largely in unknown territory. The first HDTV broadcasts used terrestrial television, and everyone needed to learn more about antennas and set-top boxes. Yet, seven years after the first HDTV broadcasts, every major network had produced some quantity of HDTV content.

There were missteps. Remember the surge in interest in 3D about a decade ago? It peaked in 2009 and featured competing 3D encoding and viewing standards, expensive glasses that often broke, complaints of headaches and nausea after extended, and even a campaign by the American Academy of Ophthalmologists to test for eye disorders; one based on the inability of certain people to see stereoscopic images correctly.

TIME TO CHANGE THINGS UP

Gerard Catapano from Samsung and Chris Chinnock of Insight Media talk about UHDTV market trends.

Gerard Catapano from Samsung and Chris Chinnock of Insight Media talk about UHDTV market trends.

HDR is different. You don’t need anything other than the naked eye to see it, and the premise of HDR is that you are watching images with peak whites and contrast ratios that follow closely what you see in real life (about 14 stops of light at any instant, from deep shadows to peak brightness).

What’s more, the colors you see rendered in HDR are much more vivid than what our current televisions can display as they’re working with a restricted color gamut. If you’ve seen bright neon or LED signs at night, marveled at a brilliant sunset, or gotten up close to tropical flowers in bloom, you know how hard it is to reproduce those intense colors on a television or computer monitor.

That’s all changed. We’re now standing at the threshold of an entirely different class of displays that are advanced by several orders of magnitude from the color TVs your parents or grandparents watched 50 years ago. It isn’t just about having more pixels – it’s about adding in all of the visual elements that replicate what you see every day.

Samsung's KS98900 HDR TV, as seen last April at Samsung's 837 Washington Street showroom. It uses quantum dots manufactured by Nanosys.

Samsung’s KS9800 HDR TV, as seen last April at Samsung’s 837 Washington Street showroom. It uses quantum dots manufactured by Nanosys.

Samsung is one of the first companies to get out of the gate with HDR televisions, and they’re using a new technology to light up the screen. Instead of conventional white light-emitting diodes (LEDs) and arrays of color filters, the light source is made up of arrays of blue LEDs and matrices of green and red quantum dots (QDs). It’s not difficult to get intensely-saturated and bright blues from LEDs, but green and red provide more of a challenge. Hence; the QD backlight.

And they are bright. Samsung claims that their HDR TVs can achieve 1000 candelas per square meter (cd/m2) in a small area, which is quite the jump from the 300 cd/m2 or so that conventional white LED backlights can generate. Plus, the intense greens and reds generated by QDs have expanded the gamut of displayable colors considerably; closer to that of digital cinema projectors.

Now, the catch: How can we measure the performance of an HDR TV equipped with quantum dots? We can’t use the older test pattern generators and set-up Blu-ray discs as they’re limited to the current ITU Recommendation BT.709 color space and only use 8-bit color encoding. (HDR is based on a 10-bit color system.)

For that matter, we can’t even use the older display interfaces to connect a test pattern generator. For HDMI, the standard must be version 2.0a, and if we want to use DisplayPort, it must be version 1.4. It goes without saying that we must use an Ultra HD Blu-ray player if we want to source HDR test patterns from optical disc – and there is exactly one of those (Samsung) on the market, with another one coming from Panasonic this fall.

Florian Friedrich and Kevin Miller discuss the challenges of evaluating and calibrating HDR TVs.

Florian Friedrich and Kevin Miller discuss the challenges of evaluating and calibrating HDR TVs.

At the Samsung event, Friedrich and Miller explained how a new suite of test patterns has been prepared for Ultra HD Blu-ray to both evaluate and calibrate an HDR display. This test pattern UHD BD will be available from Samsung and can be used with any HDR TV, even the line-up of LG organic light-emitting diode (OLED) UHD sets that have come to market.

Steve Panosian talked about the lack of standards in TV performance and how there has to be a better way for consumers to compare the performance of one brand of HDR TVs against another. Although at this point in time, there are so few models available that it’s basically Samsung vs. LG, with companies like TCL and Hisense looking to get into the game this year.

Jason Hartlove from Nanosys made an appearance to talk about what’s happening with quantum dot science and what the next generation of HDR TVs might look like as the QD arrays in Ultra HDTVs start to resemble something like an OLED emitter array. And Chris Chinnock of Insight Media served as moderator for the day’s events, which culminated in hands-on sessions showing how to use the test pattern UHD Blu-ray to evaluate a set’s performance and calibrate it for optimal results.

The panel weighs in on the current state of HDR in consumer displays.

The panel weighs in on the current state of HDR in consumer displays.

The interesting thing about HDR TVs is that we really don’t need to provide much in the way of user adjustments anymore. HDR TVs use CEA 861.3 metadata, flowing through an HDMI or DisplayPort connection, to determine brightness levels, gamma, and color values.  And with peak brightness values in the range of 800 – 1000 cd/m2, why would we need to have a “Dynamic” picture mode setting? (It’s already dynamic!)

Although I had seen this demonstration on two previous occasions, Insight Media and Samsung did an excellent job of explaining the challenges in both designing a set of test patterns to evaluate HDR TV performance and putting those patterns to actual use. I was reminded of those early days of HDTV: What signal format and connector do I need? What kind of antenna will pick up the broadcasts, and where do I aim it? What’s the difference between 720p, 1080i, and 1080p?

THE NEXT STEPS

My advice to everyone remains unchanged, however. If you are in the market for a new Ultra HDTV with HDR, I would hold off on purchasing it until at least January, if not next spring. By then, there should be several models supporting more than one HDR format (the baseline being HDR 10, but there are at least four others developed by Dolby, Technicolor, Samsung, and the BBC).

More importantly, your UHD set should support not only HDR content flowing through a display connection, but over an Internet connection. More and more content delivery is switching to video streaming as we move away from physical media. Plus, you’ll certainly spend less money on an HDR set if you can sit on your hands for a while, and there may even be a few more UHD Blu-ray player models to choose from six months from now, along with a lot more movies mastered in HDR.

Of Samsung, Big Screens, IoT, HDR, And Patience

Last Tuesday, April 12, Samsung held its annual press briefing and TV launch event at its new, “hip” facility in the Chelsea section of Manhattan. The multi-story building is known as Samsung837 (like a Twitter handle), as its location is on 837 Washington Street by the High Line elevated walkway.

Samsung, who has dominated the worldwide television market for many years – and who has a pretty good market share in smartphones, too – has been a leader in developing Ultra HD (4K) televisions with high dynamic range and wider color gamuts, most notably in their S-line.

At the briefing, they announced their new, top-of-the-line Ultra HDTVs, equipped for high dynamic range with quantum dot backlights manufactured by Nanosys of Sunnyvale, CA. There are a few new sizes in the line that are re-defining what a “small” TV screen means! The flagship model is the KS9800 curved SUHDTV, which will be available in a 65-inch size ($4,499), 78 inches ($9,999), and a mammoth 88-inch version ($19,999).

Samsung's Dave Dar fills in the press on the company's new line of S-UHDTVs.

Samsung’s Dave Dar fills in the press on the company’s new line of S-UHDTVs.

Stepping down, we find the KS9500-series, with a 55” model for $2,499, a 65” model for $3,699, and a 78” model for $7,999 (June). The flat-screen KS9000 comes in three flavors – 55” ($2,299), 65” ($3,499) and 75” ($6,499, June). There are two entry-level SKUs (if that’s even the right term to use) as well – the KS8500, a curved-screen version, is aimed at the consumer wanting a smaller screen, with a 55” model for $1,999 and a 65” model for $2,999. A 49” model will be available in May for $1,699.  The line is rounded out with the KS8000 flat SUHDTV (55” $1, 799; and 65” $2,799, with a 49” model for $1,499 and a 60” model for $2,299; both to come in May).

There’s not a huge difference between these models – the differences have mostly to do with curved and flat surfaces and the screen size options available. Plus a bevy of “bells and whistles.” Perhaps the most intriguing are a set of “connect and control” features.

Samsung’s been offering a Smart Hub feature for some time, and this year’s iteration lets you plug in a cable box from Comcast or Time Warner or a set-top from DirecTV, and the TV will automatically recognize the box and set up all the required control functions on the Samsung TV remote. All you have to do is plug in an HDMI cable.

The KS9800 will make you forget you ever lusted for a Pioneer Elite plasma TV. (As long as you don't watch it off-axis.)

The KS9800 will make you forget you ever lusted for a Pioneer Elite plasma TV. (As long as you don’t watch it off-axis.)

 

And here's where the magic happens - two jars with indium phosphide quantum dots suspended in fluid to produce those brilliant reds and greens.

And here’s where the magic happens – two jars with indium phosphide quantum dots suspended in fluid to produce those brilliant reds and greens.

On top of that, Samsung’s Smart Things feature provides on-off control of things like locks, lamps, and other devices connected by Wi-Fi, ZigBee, or Z-Wave protocols. The company offers switchable outlets, water sensors, proximity sensors, and motion sensors; all of which connect back to your television and smart phone for monitoring and control. (And yes, the television can also be controlled by this system.)

Samsung’s concept is this: Since we spend so much time in front of our big screen TVs, why not make them the hub of a home monitoring and control system? And why not make the connection and activation of everything from set-top boxes to remotely-controlled AC outlets a plug-and-play operation? A Smart Things starter kit is available for $249, and you can add compatible ZigBee and Z-Wave devices like thermostats, smoke and CO detectors, and locks from companies like Honeywell, Schlage, Cree, Leviton, and First Alert.

So why are Samsung and other TV manufacturers looking to get into home control systems? A combination of declining TV sales and falling prices has resulted in an accelerating transition away from Full HD (1920×1080) televisions and displays to Ultra HD (3840×2160), as TV manufacturing shifts to China and manufacturers frantically search for profitability.

Samsung – likely motivated by this trend – is looking a way to add value to TV sales, pitching a complete home entertainment and control system (with sound bars, surround audio, and Ultra HD Blu-ray players, of course) to consumers. It’s all about the Internet of Things (IoT) – the idea that every electronic gadget in your home has an IP address and can be controlled with a driver and an app.

The three-story atrium at Samsung's new 837 Washington Street is enormous - and has a working cafe with live entertainment.

The three-story atrium at Samsung’s new 837 Washington Street is enormous – and has a working cafe with live entertainment.

Think about this for a moment: Seven years ago, a first-tier 50-inch 1080p plasma equipped with active-shutter 3D playback was priced at $2,500. Today, you can buy four times the resolution, eight times the brightness, a much wider color gamut, a much lighter set with lower power consumption, and five more inches of screen for about $600 less.

Amazing! You’re thinking. My next TV is going to be an Ultra HDTV!  Good thinking, as your next TV sized 55 inches or larger will probably be an Ultra HD set anyway, since TV manufacturers are ramping down production of 1080p sets and retailers are devoting more shelf space to UHD.

While there are and will continue to be some amazing deals on Ultra HD sets, don’t forget the enhancements. In addition to the aforementioned high dynamic range and wider color gamut, higher frame rates (HFR) will also become a part of the UHD ecosystem. (So will 8K displays, but I’m getting ahead of myself…)

Problem is; no two companies are implementing all of these add-ons the same way. We have competing systems for HDR (Dolby Vision, Technicolor, BBC/NHK HLG, and yes, Samsung), and yet another controversy about pixel resolution in displays using the pentile red-green-blue-white (RGBW) pixel array (LG’s new Ultra HD OLEDs).

To date, only two HDR Blu-ray players have been announced, and only one (Samsung) is available at retail. A bigger problem: Many Ultra HDTVs have only one HDMI 2.0 input, which needs to support the CTA 861.3 HDR metadata standard. (DisplayPort 1.4 also works with CTA 861.3, but it was just announced). And HDMI 2.0 is barely fast enough for 4K HDR: If you want to connect a PC for Ultra HD gaming at 60Hz with 10-bit RGB (4:4:4) color, you’re out of luck.

Yep, I want one, too. But I think I'm going to wait a little while longer until the HDR picture clears up a bit...

Yep, I want one, too. But I think I’m going to wait a little while longer until the HDR picture clears up a bit…

In other words; it’s chaos as usual in the CE world, like HDTV was circa 1998. I don’t know how fast these issues will be worked out. All HDR-10 compatible TVs should play back 10-bit content from Ultra HD Blu-ray discs and media files. When it comes to enhanced HDR systems, Vizio, TCL, and LG support Dolby Vision, but Samsung does not; neither do Panasonic and Sony.

Only a handful of TV models have opted to include the still royalty-free DisplayPort interface to overcome some of the UHD speed limit issues of HDMI. 4K content isn’t exactly in abundance, either. No broadcasts are planned in the near future, and a handful of cable systems are working on 4K channels (remember the 3D channels from Comcast and DirecTV?). Netflix and Amazon Prime do stream in UHD, but you need a TV that supports the VP9/VP10 and H.265 codecs to watch.

If you are considering a purchase of an Ultra HDTV and not in a big hurry, my advice is to sit on your hands for another year until many of these issues get ironed out. Sometimes doing nothing really is the best option…