Posts Tagged ‘DockPort’

There’s fast…and then there’s FAST.

There’s Fast…and then There’s FAST.

A little over a year ago, Silicon Image announced the latest version of HDMI – 2.0. Among the other enhancements to this interface was an increase in the clock rate to 600 MHz, allowing data rates as high as 18 gigabits per second (GB/s).

Good thing, too, with Ultra HD televisions coming to market. The previous iteration of HDMI (v1.4) had a capped data rate of 10.2 Gb/s, which was barely fast enough for Ultra HD signals (3840×2160 pixels) refreshed at 30 Hz, with color depth not to exceed 8 bits per pixel.

By boosting the speed to 18 Gb/s, HDMI 2.0 can now pass a 60 Hz Quad HD signal – but only with 8-bit RGB color. (If you’re willing to cut the color resolution in half, you can increase the bit depth.) To me, that’s not enough of an improvement: If you’ve seen what it takes to shoot, edit, and post 4K content, you’ll realize why 10-bit and even 12-bit encoding is the way to go. But HDMI 2.0 can’t handle that with high frame rates.

Earlier this month, the Video Electronics Standards Association “officially” announced what we knew was coming for some time – DisplayPort version 1.3, which will boost its data rates to a mind-boggling 32 Gb/s – almost twice as fast as HDMI 2.0 – and also employ for the first time a form of visually-lossless compression, known as Display Stream.

Unlike HDMI, DisplayPort is a pure digital transport, using packet-based communication. It transports video, audio, metadata, and even Ethernet, using four scalable “lanes” to carry signals. In the current version (1.2), the capped data rate for each lane is 5.4 Gb/s, but with version 1.3, it will rise to 8 Gb/s.

DisplayPort’s architecture is designed to be flexible. There are full-sized and mobile versions of the connector, along with wireless and optical fiber interface specifications. Users of Apple MacBooks are familiar with the Mini DisplayPort interface, and a mobile version (Mobility DisplayPort or SlimPort) is available for tablets and phones and uses a single lane for 1080p/60 playback.

The maximum data rate for all four lanes is 21.6 Gb/s, which can accommodate a 3840x2160p/60 signal encoded with 10 bits per pixel in the RGB format. That’s considerably faster than HDMI 1.4 and one reason why a handful of TV manufacturers are adding DP 1.2 connectors to their new 4K TVs. The other reason is the lack of royalties (for now) to use the interface.

At CES, VESA announced DockPort, a multiplexed signal format that blends USB 3.0 connectivity with display signals in the standard and mini DP connectors. Now, there has been a major announcement by the USB 3.0 Promoter Group and the Video Electronics Standards Association (VESA) of something called “USB Type-C Alternate Mode.”

Drilling deeper, we find that the USB 3.0 Group has introduced a new variation of their interface, known as the Type-C connector. Unlike other versions (Types A&B and their more commonly used “full-size” and “mini” designations); the type-C connector borrows a page from Apple’s playbook and is reversible. That is; it makes no difference which way you plug it in – there is no right side or wrong side up.

There’s more: The Type-C connector (about half as large as a conventional USB Type-A connector) can carry serial data at speeds up to 10.2 Gb/s (USB 3.1 Gen 2). It can also deliver up to 100 watts of power (20 volts DC at a maximum of 5 amperes) so that a connected device could be operated while its battery charges.

There are 12 pins on a Type-C connector arrayed along both edges of the blade. Viewed from the end, the top and bottom pins are reversed from left to right, which is how you can plug it in either way and it will still work. Two pins (1 and 12) are used for ground. Pins 2 and 3 are reserved for a high-speed transmit (TX) data path, while pins 10 and 11 are reserved for a receive data (RX) path.

Pins 4 and 9 provide bus power, and pin 5 (CC) is used to communicate with the connected device to determine operating mode. Finally, pins 6 and 7 function as a USB 2.0 interface. Needless to say, the host and connected device need a USB 3.0-compatible connector switch to determine the operating mode and enable data exchange in 2.0 or 3.0 formats.

Print

DisplayPort can run over the new USB Type-C connector – with no in-between adapters.

What’s unique about Type-C cables is that so-called “full feature” passive cables will actually contain an internal ID chip that signals the source connection to turn on all USB 3.0 functions and enable high-speed data exchange. These cables will be able to transmit 10.2 Gb/s of data over 1 meter (3 feet) and 5 Gb/s over 2 meters (6 feet).

Using Alternate DisplayPort mode, a maximum of four DP “lanes” of display data can travel over that same tiny USB connector, providing all the resolution and bit depth of the full-size and mini DisplayPort connectors. Or, you can reserve two lanes for USB 3.1 operation and employ the other two for displays, something you might want to do in a docking station application. USB 2.0 data exchange is always available through the same connector.

As you can see, the USB connector has gotten a lot smaller. It’s also a lot faster, and is symmetrical (no more fumbling around trying to orient the plug the right way). And it can provide the primary display connection for any device while also sending and receiving high-speed data.

With this announcement, the USB 3.0 Group and VESA have shown that “less is more” when it comes to digital signal interfacing with Type-C Alternate operation. Oh, did I mention that you will be able to buy and use a cable with a Type-C USB connector on one end and a DisplayPort plug on the other? Can’t get any easier to use than that!

CES 2014 In The Rear-View Mirror

Once again, CES has come and gone. It sneaks up on us right after a relaxing Christmas / New Year holiday. We’re jolted out of a quiet reverie and it’s back to the rush to board at the airport gate, walking the serpentine lines for taxis at McCarran Airport, and “late to bed, early to rise” as we scramble to make our booth and off-site appointments in Las Vegas.

We don’t make them all on time. Some we miss completely. But there’s a serendipity angle to it all: We might find, in our haste to get from one meeting to another, some amazing new gadget we didn’t know about as we take shortcuts through booths in the North, South, and Central Halls.

Or a colleague sends us a text or leaves a voicemail, emphatically stating “you have to see this!” Or a chance meeting leads to an ad hoc meeting, often off-site or over a hasty lunch in the convention center.

My point is this: You “find” as many cool things at the show as you “lose.” For every must-see product that you don’t see, there’s another one you trip over. Granted; many “must-see” products are yawners – you’ve figured it out 30 seconds into your carefully-staged meeting with PR people and company executives, and you’re getting fidgety.

LS Samsung Booth MCU 600p

My best CES discoveries involve products or demos where I can observe them anonymously, without PR folks hovering at my side or staring at my badge before they pounce like hungry mountain lions.

Unlike most of my colleagues in the consumer electronics press, I don’t need to break stories the instant I hear about them. There are already too many people doing that. What’s missing is the filter of analysis – some time spent to digest the significance of a press release, product demo, or concept demo.

And that’s what I enjoy the most: Waiting a few days – or even a week – after the show to think about what I saw and ultimately explain the significance of it all. What follows is my analysis of the 2014 International CES (as we are instructed to call it) and which products and demos I thought had real significance, as opposed to those which served no apparent purpose beyond generating daily headlines and “buzz.”

Curved TV screens: OK, I had to start with this one, since every TV manufacturer at the show (save Panasonic and Toshiba) exhibited one or more curved-screen OLED and LCD televisions. Is there something to the curved-screen concept? On first blush, you’d think so, given all of the PR hype that accompanied these products.

The truth is; really big TV screens do benefit a little from a curved surface, particularly if they are UHDTV models and you are sitting close to them. The effect is not unlike Cinerama movie screens from the 1950s and 1960s. (That’s how I saw Dr. Zhivago and 2001: A Space Odyssey back in the day.)

Toshiba described their version of the 21:9 widescreen LCD TV as having

Toshiba described their version of the 21:9 widescreen LCD TV as having “5K” resolution – and mathematically, it does (I guess!).

This wall of 56-inch curved OLEDs greeted visitors to the Panasonic booth.

This wall of 56-inch curved OLEDs greeted visitors to the Panasonic booth.

Bear in mind I’m talking about BIG screens here – in the range of 80 inches and up. The super-widescreen (21:9 aspect ratio) LCD TVs shown by Samsung, LG, and Toshiba used the curve to great effect. But conventional 16:9 TVs didn’t seem to benefit as much, especially in side-by-side demos.

The facts show that worldwide TV shipments and sales have declined for two straight years, except in China where they grew by double digits each year. TV prices are also collapsing – you can buy a first-tier 55-inch “smart” 1080p LCD TV now for $600, and 60-inch “smart” sets are well under $800 – so manufacturers will try anything to stimulate sales.

Is that the reason why we’re seeing so many UHDTV (4K) TVs all of a sudden? Partially. Unfortunately, there’s just no money in manufacturing and selling 2K TVs anymore (ask the Japanese manufacturers how that’s been working for them), and the incremental cost to crank out 4K LCD panels isn’t that much.

Chinese panel and TV manufacturers have already figured this out and are shifting production to 4K in large panels while simultaneously dropping prices. You can already buy a 50-inch 4K LCD TV from TCL for $999. Vizio, who is a contract buyer much like Apple, announced at the show that they’d have a 55-inch 4K LCD TV for $1299 and a 65-inch model for well under $2,000.

Hisense is building a factory in the U.S. to assemble TVs. And you wondered if they were serious about the North American TV business?

Hisense is building a factory in the U.S. to assemble TVs. And you wondered if they were serious about the North American TV business?

Vizio's 65-inch high dynamic range (HDR) 4K TV was very impressive.

Vizio’s 65-inch high dynamic range (HDR) 4K TV was very impressive.

Consider that the going price for a 55-inch 4K “smart” LCD TV from Samsung, LG, and Sony is sitting at $2,999 as of this writing and you can see where the industry is heading. My prediction is that all LCD TV screens 60 inches or larger will use 4K panels exclusively within three years. (4K scaling engines work much better than you might think!)

And don’t make the popular mistake of conflating 4K with 3D as ‘failed’ technologies. The latter was basically doomed from the start: Who wants to wear glasses to watch television? Not many people I know. Unfortunately, glasses-free (autostereo) TV is still not ready for prime time, so 3D (for now) is basically a freebie add-on to certain models of televisions.

4K, on the other hand, has legs. And those legs will get stronger and faster as the new High Efficiency Video Codec (HEVC) chips start showing up in televisions and video encoders. HEVC, or H.265 encoding, can cut the required bit rate for 2K content delivery in half. That means it can also deliver 4K at the old 2K rates, somewhere in the ballpark of 10 – 20 Mb/s.

Toshiba (like many others) is moving quickly to adopt and integrate HEVC H.265  encoding and decoding into their products.

Toshiba (like many others) is moving quickly to adopt and integrate HEVC H.265 encoding and decoding into their products.

Nanotech's Nuvola 4K media player costs only $300 and delivers the goods.

Nanotech’s Nuvola 4K media player costs only $300 and delivers the goods.

While consumer demand for 4K is slowly ramping up, there is plenty of interest in UHDTV from the commercial AV sector. And Panasonic focused in on that sector almost exclusively in their CES booth. I’m not sure why – there are plenty of inferences here; most significantly, it would appear that Panasonic is exiting the money-losing television business entirely. (Ditto nearby Toshiba, which had similar 4K “applications” showcased and which also did not exhibit a line of 2014 televisions.)

Long story short; you may be buying 4K televisions in the near future whether you want ‘em or not. It’s a manufacturing and plant utilization issue, and if commercial demand for 4K picks up as expected, that will drive the changeover even faster.

As for sources of 4K content; Samsung announced a partnership with Paramount and Fox to get it into the home via the M-Go platform. Comcast had an Xfinity demo for connected set-top-boxes to stream 4K, and of course Netflix plans to roll out 4K delivery this year direct to subscribers.

I’m not sure how they’ll pull that off. My broadband speeds vary widely, depending on time of day: I’m writing this at noontime and according to CNET’s Broadband Speed Test, my downstream bit rate is about 22 megabits per second (Mb/s). Yet, I’ve seen that drop to as low as 2 – 3 Mb/s during late evening hours, when many neighbors are no doubt streaming Netflix movies.

Even so, HEVC will definitely help that problem. I spoke to a couple of Comcast folks on my flights out to and back from CES, and they’re all focused on the bandwidth and bit rate challenges of 2K streaming, let alone 4K. More 4K streaming interface products are needed, such as Nanotech’s $300 Nuvola NP-H1, which is about the size of an Apple TV box and ridiculously simple to connect and operate.

LG's got a 77-inch curved OLED TV that can also flex. (Why, I don't know...)

LG’s got a 77-inch curved OLED TV that can also flex. (Why, I don’t know…)

nVidia built an impressive 3D heads-up display into the dash of a BMW i3 electric car.

nVidia built an impressive 3D heads-up display into the dash of a BMW i3 electric car.

Oh, yeah. I should have mentioned organic light-emitting diode (OLED) displays earlier. There were lots of OLED displays at CES, ranging from the cool, curved 6-inch OLED screen used in the new LG G-Flex curved smartphone to prototype 30-inch OLED TVs and workstation monitors in the TCL booth and on to the 55-inch, 65-iunch, and even 77-inch OLED TVs seen around the floor. (LG’s 77-inch offering is current the world’s largest OLED TV, and of course, it’s curved.)

OLEDs are tricky beasts to manufacture. Yields are usually on the low side (less than 25% per manufacturing run) and that number goes down as screen sizes increase, which explains the high prices for these TVs.

And there’s the unresolved issue of differential color aging, most notably in dark blue emitters. With current OLED science, you can expect dark blue emitters to reach half-brightness at about 5,000 hours of operation with a maximum brightness of 200 nits. Samsung addresses this quandary by employing two blue emitters for every red and green pixel on their OLED TVs, while LG has the more difficult task of managing blue aging in their white OLED emitters.

Several studies over the past three years consistently show people hanging on to their flat screen TVs for 5 to 7 years, which is likely to be a lot longer than 5,000 hours of operation. Will differential color aging rear its ugly head as early adopters shell out close to $10K for a 55-inch OLED TV? Bet on it.

Turns out, there’s another way to get wide color gamuts and saturated colors: Quantum dots. QDs, as we call them, are inorganic compounds that exhibit piezoelectric behavior when bombarded with photons. They emit stable, narrow-bandwidth colors with no drift, and can do so for long periods of time – long enough to work in a consumer television.

3M featured its quantum dot film (QDF) in several demos. An LCD TV equipped with it is at the top of the picture.

3M featured its quantum dot film (QDF) in several demos. An LCD TV equipped with it is at the top of the picture.

This prototype WiHD dongle turns any smartphone or tablet equipped with MHL or Micro HDMI interfaces into a 60 GHz wireless playback system.

This prototype WiHD dongle turns any smartphone or tablet equipped with MHL or Micro HDMI interfaces into a 60 GHz wireless playback system.

QDs are manufactured by numerous companies, most notably Nanosys and QD Vision in the United States.  The former company has partnered with 3M to manufacture an optical film that goes on the backside of LCD panels, while the latter offers Color IQ optical components that interface with the entire LED illumination system in edge-lit TVs.

Sony is already selling 55-inch and 65-inch 4K LCD TVs using the Color IQ technology, and I can tell you that the difference in color is remarkable. Red – perhaps the most difficult color to reproduce accurately in any flat-screen TV – really looks like red when viewed with a QD backlight. And it’s possible to show many subtle shades of red with this technology.

All you need is a QD film or emitter with arrays of red and green dots, plus a backlight made up of blue LEDs. The blue passes through, while the blue photons “tickle” the red and green dots, causing them to emit their respective colors. It’s also possible to build a direct-illumination display out of quantum dots that would rival OLED TVs.

How about 4K display interfaces? By now, you’ve probably heard that HDMI has “upgraded” to version 2.0 and can support a maximum data rate of 18 gigabits per second (GB/s).  Practically speaking; because of the way display data is transmitted, only 16 Gb/s of that is really available for a display connection. Still, that’s fast enough to show 4K content (3840×2160, or Quad HD) with a 60 Hz frame rate, using 8-bit color.

DisplayPort can now carry USB 3.0 on its physical layer. Here's an Accell DockPort breakout box with Mini DisplayPort and USB connections.

DisplayPort can now carry USB 3.0 on its physical layer. Here’s an Accell DockPort breakout box with Mini DisplayPort and USB connections.

Epson's Moverio glasses aren't as sexy as Google Glass - but then, they can do more things.

Epson’s Moverio glasses aren’t as sexy as Google Glass – but then, they can do more things.

Over at the DisplayPort booth, I heard stories of version 1.3 looming later this spring. DisplayPort 1.2, unlike HDMI, uses a packet structure to stream display, audio, and other data across four scalable lanes, and has a maximum rate of 21.6 Gb/s – much faster than HDMI. Applying the “20 percent” rule, that leaves about 17.3 Gb/s to actually carry 4K signals. And the extra bits over HDMI means that DP can transport 3840×2160 video with a frame rate of 60 Hz, but with 10-bit color.

Don’t underestimate the value of higher data rates: 4K could turn out to be a revolutionary shift in the way we watch TV, adding much wide color gamuts, higher frame rates, and high dynamic range (HDR) to the equation. HDMI clearly isn’t fast enough to play on that field; DP barely is. Both interfaces still have a long way to go.

So – why not make a wireless 4K connection? There were plenty of demos of wireless connectivity at the show, and I’m not just talking about Wi-Fi. Perhaps the most impressive was in the Silicon Image meeting room, all the way at the back of the lower South Hall, near the Arizona border.

SI, which bought out wireless manufacturer SiBEAM a few years ago, demonstrated super-compact 60 GHz wireless HDMI and MHL links using their UltraGig silicon. A variety of prototype cradles for phones and tablets were available for the demo: Simply plug in your handheld device and start streaming 1080p/60 video to a nearby 55-inch LCD TV screen.

Granted, the 60 GHz tech is a bit exotic. But it works quite well in small rooms and can take advantage of signal multipath “bounces” by using multiple, steerable antenna arrays built-in to each chip. And it can handle 4K, too – as long as the bit rate doesn’t exceed the HDMI 2.0 specification, the resolution, color bit depth, and frame rate are irrelevant.

This sort of product is a “holy grail” item for meeting rooms and education. Indeed; I field numerous questions every year during my InfoComm wireless AV classes along these lines: “Where can I buy a wireless tablet dongle?” Patience, my friends. Patience…

LG was one of many companies showing

LG was one of many companies showing “digital health” products, like these LifeBand monitors.

You can now buy the concave-surface LG G-Flex smartphone. But I don't think you'll see any of these in the near future...

You can now buy the concave-surface LG G-Flex smartphone. But you won’t see any of these in the near future…

The decline in TV shipments and sales seems to be offset by a boom in connected personal lifestyle and health gadgets, most notably wristbands that monitor your pulse and workouts. There were plenty of these trinkets at the show and an entire booth in the lower South Hall devoted to “digital health.”

Of course, the big name brands had these products – LG’s LifeBand was a good example. But so did the Chinese and Taiwanese manufacturers. “Digital health” was like tablets a few years back – so many products were introduced at the show that they went from “wow!” to “ho-hum” in one day.

This boom in personal connectivity extends to appliances, beds (Sleep Number had a model that can elevate the head of the bed automatically with a voice command), cars (BMW’s i3 connected electric car was ubiquitous), and even your home. Combine it with short-range Bluetooth or ZigBee wireless connectivity and you can control and monitor just about anything on your smartphone and tablet.

Granted; there isn’t the money in these small products like there used to be in televisions. But consumers do want to connect, monitor, and control everything in their lives, and their refrigerators, cars, beds, televisions, percolators, and toasters will be able to comply. (And in 4K resolution, too!)

PointGrab can mute a TV simply by raising a finger to your lips!

PointGrab lets you mute a TV simply by raising a finger to your lips!

Panasonic downplayed TVs at CES, but had a functioning beauty salon in their booth (by appointment only..)

Panasonic downplayed TVs at CES, but had a functioning beauty salon in their booth (by appointment only..)

Obviously, I didn’t visit the subjects of gesture and voice control. There were several good demos at the show of each, and two of the leading companies I showcased last year – Omek and Prime Sense – have been subsequently acquired by Intel and Apple. Hillcrest Labs, PointGrab, and other had compelling demos of gesture control in Las Vegas – a subject for a later time.

Summing up, let’s first revisit my mantra: Hardware is cheap, and anyone can make it. Televisions and optical disc media storage are clearly on the decline, while streaming, 4K, health monitoring, and wireless are hot. The television manufacturing business is slowly and inexorably moving to China as prices continue their free-fall.

The consumer is shifting his and her focus to all the devices in the home they use every days; not just television. Connectivity is everything, and the television is evolving from an entertainment device into a control center or “hub” of connectivity. The more those connections are made with wireless, the better – and that includes high-definition video from tablets and phones.

It’s going to be an interesting year…