Posts Tagged ‘8K Association’

NAB 2019: Where Does It Go From Here?

This year’s NAB Show marked a milestone for me as it was my 25th consecutive April visit to the halls of the Las Vegas Convention Center. Back in 1995, my first impression was of enormous booths full of expensive hardware (lots of cameras with five-figure price tags), tape-based recording and editing systems, huge audio consoles, and the costly first iterations of non-linear video editing systems.

The World Wide Web was just becoming a thing, and NAB had set up an area in the then-Hilton ballroom so that a bunch of small companies (none of whose names I remember and none of who are around any more) could amaze us with stories of video streaming (basically tiny stamp-sized clips of low-resolution talking heads) and how someday, “all of this will be available to anyone with an Internet connection.” Of course, it would have to be a lot faster than the dial-up speeds available then.

I just remember shaking my head, thinking none of this would ever fly, and moving onto the big, expensive hardware. SDI, VGA, BNC connectors – stuff I could understand. “Reference” video monitors were bulky, heavy chassis with cathode-ray tubes and sold for tens of thousands of dollars.

Video itself was largely standard definition back then – HDTV was still in its infancy, and the so-called “Grand Alliance” of companies like Zenith/LG, AT&T, General Instrument, and others were pushing for an all-digital broadcast television system to replace NTSC. (Grand Alliance banners were prominently featured on the outside facades of the North Hall and Central Hall.)

Sharp’s 8C-30A is the first 8K DSLR to market. It only shoots 30p, but that’s a bus speed and interfacing limitation.

 

NHK’s been broadcasting 8K video content via satellite since last December and will cover the 2020 Olympics extensively in 8K.

And the “broadcast” part of NAB was BIG. Lots of companies showing exciters, transmitters, antennas, monitoring equipment, tubes and solid-state rigs, and hardline and waveguide dominated the North Hall and part of the Central Hall. Industry giants like Panasonic, JVC, Hitachi, Sony, Ikegami, Canon, and Toshiba constructed booths larger than the average house. Life was good, sales were brisk, and there was plenty of profit for everyone.

At the time, I was writing columns and feature articles for Video Systems, and our annual NAB issue was so stuffed with ads that it ran well over 300 pages. Other publications were jockeying for ad sales and editorial coverage, filling NAB press conferences to the rafters. You may remember some of them – Videography, Post, Millimeter, AV Video, Broadcast Engineering, TV Technology, and Television Broadcast, to name a few.

We all know what happened in the intervening years. The “broadcast” part of NAB is a tiny portion of the exhibit floor now. Those streaming video guys with their advanced codecs now rule the roost. High-quality video cameras capable of shooting 4K video sell for one-tenth of those 1995 models and do it all to solid-state memory cards. Non-linear editing is so ubiquitous that you can buy the software for about $100 and run it on your everyday laptop. And trade publications are largely dinosaurs.

We made the transition to digital TV broadcasting in 2009 and are about to move again to a newer, more IP-centric system, ATSC 3.0. CRTs are a distant memory, replaced by large high-resolution flat screen LCD and OLED displays. High dynamic range with its associated wider color gamut is muscling its way into our homes and theaters. High frame rate video, once considered a major obstacle, is becoming reality, even at Ultra HD resolution.

Chris Chinnock of the 8K Association ran a full day of 8K seminars on Wednesday.

 

Socionext is the only chip manufacturer able to deliver HDMI 2.1 TX and RX chipsets at present.

And those once-enormous booths are steadily shrinking each year as profit continues to evaporate from hardware sales. Indeed; the focus at this year’s NAB Show seemed to be shifting (as one company VP put it) away from capital expenditures (CapEx) to operating expenditures (OpEx). Hardware is increasingly becoming generic – the ATSC 3.0 single-frequency network broadcasting demos in the North Hall ran off a pair of compact Dell servers – and software is the new king of the hill. (How much booth space do you really need to demo software?)

The shift away from hardware to software may also be impacting attendance. The official head count for 2017 was 103,443. Two years later, attendance was pegged at 91,460; representing a decline of 11.6%, or 12,000 visitors. That’s quite a dip – not as pronounced as the drop from 2008 to 2009 during the Great Recession, but still enough to give show organizers some reason for concern.

The general feeling among many of my colleagues and friends was that the show was trying to find an identify. The theme of the show was “Every Story Starts Here,” which is about as generic and vague as you can get. Was that a reference to the fact that that high-quality tools to capture, edit, and produce compelling video are a relative bargain these days, and that we should concentrate more on how we use them and less on how they work?

Astro exhibited many things 8K, including this compact 8K/120 camera with built-in CCU.

 

Leyard Planar brought back their 8K LED fine pitch videowall from a year ago.

I don’t have the answers. What I can tell you is that there were still some interesting products to be found in Las Vegas, and from my perspective, a great deal of them pertained to UHD video capture, editing, and distribution. My focus has always been forward-looking (aside from the nostalgia piece I opened this feature with), so the transition of HDTV to Ultra HDTV and the attendant transitions to a new digital TV broadcast system and advanced video codecs held the greatest interest for me.

Yes, 8K has arrived, Yes, it’s not immediately obvious why we need it. But like it or not, the cameras are here, the displays are coming to store shelves, and at least one broadcaster (NHK) is operating a 24/7 8K video channel. Companies that showed 8K cameras at NAB included Sony, Ikegami, RED, Hitachi, and Sharp. The latter brand made 8K the focus of their entire booth, a bold and impressive statement considering Sharp was nearing bankruptcy not that long ago.

Panasonic’s take on 8K was something called an “area of interest” camera, allowing anyone to dynamically select and switch between any of four 2K video slices of the overall image. This technique was described by NHK a few years back at the annual SMPTE Conference as a way to achieve a multi-camera shoot with just one or two cameras. Astro (who has commercialized many of NHK’s 8K innovations) had several flavors of 8K on display including a stereo VR camera, a fisheye lens fitted to an 8K camera, and a compact 8K/120p camera with CCU built-in that weighed less than 10 pounds.

Panasonic’s 8K Area Of Interest (AOI) camera lets you create a virtual four-camera 2K shoot and switcher – all from one static view.

 

Sony’s UHC-8300 8K portable camcorder will get a workout at the 2020 Olympics.

Astro also addressed an on-going challenge for adoption of 8K video and display, and that was upconverting 1080p/2K content in an acceptable manner. Their demo of an AI-based up-scaling system was quite impressive, particularly given the challenging test patterns and fine text used in the demo. Sharp’s big announcement was the availability of the world’s first DLSR with 8K native resolution. The 8C-30A can shoot 8K/30p video using a Micro Four Thirds sensor and a variety of lenses, but will be pricey at around $4,000.

Notable by their absence in this market: Canon. I was told by a company official that Canon does sell an 8K camera in Japan for broadcast and production, but has no plans to offer it stateside unless there is sufficient demand. Of course, Japan remains the focus for every player in 8K, what with the summer Olympics coming up in 2020 and brands like Hitachi and Sony jockeying to provide cameras and hardware to cover the event.

Given the enormous volume of data that 4K and 8K cameras generate, I was also on the lookout for advanced codecs. HEVC H.265 has been around for a few years and could be suitable for the job. The only question is latency, particularly for contribution. NTT seems to have a handle on the problem, as they showed a prototype encoder/decoder combination for 4K/120 video that has an end-to-end latency of just 37 milliseconds.

If you’re having trouble keeping track of all the players in UHD HDR, this chart may help. Or not.

 

Ikegami also has an 8K production camera ready for the 2020 Olympics.

Another approach is to improve codec efficiency. At the Wednesday 8K Association seminars, a more detailed explanation of the new Versatile Video Codec (VVC, perhaps to become H.266?) was offered. The key to improving efficiency is increasing the maximum encoding block size from 64×64 used in H.265 to 128×128, with a targeted reduction of 50% in bit rate. Presently, the actual improvement is about 34% as software evolves.

Astro and Sharp also demonstrated a practical 8K/60p non-linear editing and color correction platform known as Tamazone. It imports 8K 4:2:2 10-bit YUV from Sharp’s 8C-60A camcorder using four 12G SDI connections through BlackMagic Design’s DeckLink 8K Pro interface, with DaVinci Resolve 15 Studio and Resolve Live software. To view what you’re working on, an nVIDIA Quadro Pro 4000 graphics card drives a pair of DisplayPort 1.2 interfaces on an associated 8K monitor, stitching together two 4K images.

Yes, it’s a bit of a “Scotch Tape and paper clips” solution at the display end…but then, so was 4K when it first got off the ground more than a decade ago. The real challenge now is at the monitor – there really aren’t any true 8K reference monitors out there. Sharp showed a 32-inch prototype using their IGZO TFT backplane technology, but for now, the few 8K monitor products being talked about are largely based on consumer television designs. (LG Display has also shown an 8K 31.5” monitor for several years now.)

Advantech was streaming 8K/60 video across their booth over a fast IP network at 200 Mb/s using HEVC H.265.

 

NTT claims they can encode and decode 4K / UHD video with a 120 Hz frame rate using H.265, but with just 37 milliseconds of latency end-to-end.

It’s possible that the new 31.5” 4K LCD monitors shown by Panasonic, Sony, and others might fit the bill eventually. This HDR monitor uses two panels. The first is a 4096×2160 IPS-Alpha LCD with full array backlight, while the second panel is identical in construction but free of color filters. It is precisely aligned with the first panel and works as a monochromatic light shutter to provide really deep black levels. Of course, it requires a lot more horsepower in the backlight as a consequence.

Another popular discussion on the show floor was the concept of shooting, editing, and archiving at higher resolution and using lower-resolution (4K, Full HD) for distribution. In this way, the goals of improving current HD and 4K video quality can be improved significantly, but the finished product is a bit more friendly to bandwidth-constricted distribution systems like broadcast and streaming. Hitachi has argued for Full HD with HDR as a practical broadcast format (it is) and a 4K program derived from an 8K master would look pretty darn good on Netflix and Amazon Prime.

So many questions and not a lot of answers, just possible solutions. I expect NAB to get smaller over time as the emphasis shifts from hardware to software (ironic, given the LVCC is in the middle of another expansion to almost 4 million square feet). No doubt 8K will be a part of it, as will IP-based distribution of media. No wonder there was an air of “where do we go from here?” during the show…