NAB 2018 In The Rear View Mirror

I just returned from my annual visit to the NAB Show in Las Vegas and the overall impression was of an industry (or industries) marching in place. Many booths were smaller; there were plenty of empty spaces filled with tables and chairs for eating and lounging, and at times you could hear crickets chirping in the North and Central Halls.  (Not so the South Hall, which was a madhouse all three days I visited.)

There are a number of possible reasons for this lack of energy. The broadcast and film industries are taking the first steps to move to IP backbones for everything from production to post and distribution, and it’s moving slowly. Even so, there was no shortage of vendors trying to convince booth visitors that AV-over-IT is the way to go, chop-chop!

Some NAB exhibitors that were formerly powerhouses in traditional media production infrastructures have staked their entire business model on IT, with flashy exhibits featuring powerful codecs, cloud media storage and retrieval, high dynamic range (HDR) imaging, and production workflows (editing, color correction, and visual effects) all interconnected via an IT infrastructure.

And, of course, there is now a SMPTE standard for transporting professional media over managed AV networks (note the word “managed”), and that’s ST 2110. The pertinent documents that define the standards are (to date) SMPTE ST 2110-10/-20/-30 for addressing system concerns and uncompressed video and audio streams, and SMPTE ST 2110-21 for specifying traffic shaping and delivery timing of uncompressed video.

No doubt about it – the Central Hall booths were definitely smaller and quieter this year.

 

Canon’s Larry Thorpe and Ivo Norenberg talked about the company’s new 50-1000mm zoom lens for Full HD cameras.

 

BlackMagic Design’s Pocket Cinema 4K Camera is quite popular – and affordable.

Others at NAB weren’t so sure about this rush to IT and extolled the virtues of next-generation SDI (6G, 12G, and even 24G). Their argument is that deterministic video doesn’t always travel well with the non-real-time traffic you find on networks. And the “pro” SDI crowd may have an argument, based on all of the 12G connectivity demos we saw. 3G video, to be more specific, runs at about 2.97 Gb/s, so a 12G connection would be good for 11.88 Gb/s – fast enough to transport an uncompressed 4K/60 video signal with 8-bit 4:2:2 color or 10-bit 4:2:0 color.

I’ve talked about 8K video and displays in previous columns, but mostly from a science experiment perspective. Well, we were quite surprised – perhaps pleasantly – to see Sharp exhibiting at NAB, showing an entire acquisition, editing, production, storage, and display system for 8K video. (Yes, that Sharp, the same guys that make those huge LCD displays. Now owned by Hon Hai precision industries.)

Sharp’s 8K broadcast camera, more accurately the 8C-B60A, uses a single Super 35mm sensor with effective resolution of 7680×4320 pixels arrayed in a Bayer format. That’s 16 times the resolution of a Full HD camera, which means data rates that are 16x that of 3G SDI. In case you are math challenged, we’re talking in the range of 48 Gb/s of data for a 4320p/60 video signal with 8-bit 4:2:2 color, which requires four 12G connections.

Sharp is building 8K cameras for live coverage of the 2020 Tokyo Olympics.

 

NHK demonstrated an 8K 240Hz slow motion video playback system, along with other 8K goodies.

 

Soliton demonstrated H.265 encoding across multiple platforms, including Android devices.

And this isn’t a science experiment at all. Sharp is building cameras for the live 8K broadcasts to take place at the 2020 Tokyo Olympics, originating from Japanese broadcast network NHK. By now, this should be old hat, as NHK has been covering the Olympics in 8K since 2012 and showed different approaches to home viewing in Las Vegas. They also impressed with demos of 8K “slo-mo” video at a frame rate of 240 Hz, and yes, it is practical and ready to roll.

In the NHK booth, you could also watch a demonstration of 8K/60 video traveling through a 10 Gb/s switch using so-called mezzanine compression based on the TiCo system. In this case, NHK was using 5:1 TiCo compression to slow down a 40 Gb/s 8K/60 video stream to 8 Gb/s. (Four 12G video connections would result in a bit rate of nearly 48 Gb/s in case you’re wondering.)

Not far from NHK’s booth last year was a virtual city of companies showing virtual reality (VR) and augmented reality (AR) hardware and software. That was about twice the size of the VR/AR exhibits in 2016, so I expected to find a sprawling metropolis of VR goodies. Instead, I came across a very large food court and lots of partitioned-off space. Turns out, what was left of the VR companies occupied a small pavilion known as “Immersive Storytelling.” Is VR the next 3D? (Probably not, but you couldn’t be blamed for thinking that.)

Panasonic’s got a 55-inch 4K OLED monitor for client viewing.

 

Epson showed an ultra short-throw laser projection system with excellent edge-to-edge sharpness.

 

The gadgeteers at NTT built a drone with a spinning LED sign shaped like a globe. Why? Because they could, I suppose.

Upstairs in the South Hall, there were dozens of companies hawking video compression tools, streaming and cloud services, targeted ad insertion, audience analytics, and a bunch of other buzzwords I’m probably getting too old to completely understand. (It will be interesting to see how many of these enterprises are still around a year from now.)

But my primary goal in that hall was to talk to folks from the Alliance for Open Media coalition. In case you haven’t heard of this group, they’ve been promoting an open-source, royalty-free codec labeled AV-1 for “next-generation 4K video.” There are at least 18 prominent members of the group and you may recognize a few of them, such as Google, Apple, Mozilla, YouTube, Netflix, Facebook, and VideoLAN.

And that they’re promoting is a codec that is very similar to HEVC H.265, which is made up of lots of intellectual property that requires licensing from an organization known as MPEG-LA (Licensing Authority, not Los Angeles). The AOM contingent thinks it is taking WAY too long to get H.265 off the ground and would rather just make a suitable codec free to anyone who wants to use it to speed up the transition to 4K video.

In addition to giving out red, yellow, green, and blue lollipops, Google had its jump 360-degree camera out for inspection.

 

Technicolor claims to have solved the problem of rapid switching between different HDR formats streaming in the same program.

 

Keep an eye on the AV-1 codec. It could really upset the apple cart.

Of course, they didn’t have a ready answer when I questioned the future viability of any company that had sunk millions of dollars into H.265 development, only to see their hard work given away for free. The stock answers included “there will be winners and losers” and “some companies will probably be bought out.” Note that the primary goal of the members I listed is content delivery, not living off patent royalties, so that gives you some insights to their thinking.

The last puzzle piece was the new ATSC 3.0 standard for digital TV broadcasting, and it’s being tried out in several markets as I write this; most notably, Phoenix. ATSC 3.0 is not compatible with the current version 1.0 as it uses a different modulation process (ODM vs. VSB) and is very much intertwined with IP to make delivery to mobile devices practical. WRAL in Raleigh, North Carolina has been broadcasting in this format for almost a year now.

ATSC 3.0 is already being tested in several TV markets. Will it take off? And how will consumers choose to watch it?

 

CreateLED had this cool LED “waterfall” in their booth.

ATSC 3.0 is designed to be more bandwidth-efficient and can carry 1080p and 4K broadcasts along with high dynamic range video. At the show, I saw demos of ATSC 3.0 receivers married to 802.11ac WiFi routers, ATSC 3.0 set-top boxes, and even an autonomous shuttle vehicle between the Central and South Halls that was supposedly carrying live ATSC 3.0 mobile broadcasts. (It wasn’t working at the time, though. More crickets…)

All in all; a very subdued show, but reflective of an industry in transition from a world of deterministic video traveling uncompressed over coaxial cable to compressed audio and video packets streaming through wired and wireless networks with varying degrees of latency. Where do we go from here?