Category: The Front Line

Broadcast TV Spectrum Repacking: The Devil Is In The Details

The FCC has concluded its spectrum auction, and although the winning bids generated only about ¼ of what was expected, plenty of TV stations will be moving to new channels.

But there’s a catch. And you probably won’t be happy when you hear about it.

Currently, the majority of TV stations broadcast in the UHF television spectrum from channels 14 to 51. Another smaller block of stations use the high band VHF channels (7 through 13) while fewer than 50 stations transmit on low band VHF channels (2 through 6).

That is certainly going to change, as it appears all UHF TV channels above 37 will be re-allocated for a variety of services, including Wi-Fi, mobile phones, and a bunch of other “white space” operations. There may even be a few TV stations still mixed in with these services, and we won’t know how broadcasters will be re-packed until early April.

Finding new channels for broadcasters who gave up their channels in return for some nice cash will be a pain in the neck. And it will certainly require some stations to move back to those low-band VHF channels, which were once desirable back in the early days of television (Channels 2 and 3 were ‘golden’ then), but now make up what’s essentially the low-rent district of TV broadcasting.

Why? First off, much larger antennas will be required to receive these stations. A full wavelength at 56 MHz (channel 2) is about 5.4 meters, or about 17.5 feet. So a somewhat-efficient ¼-wave whip antenna to pull in that channel needs to be about 4.4 feet long. (Now you know why grandpa and grandma’s TVs had those long ‘rabbit ear’ indoor antennas!)

That’s not to say you can’t pick up these channels with smaller antennas – if the signal is strong enough, you probably can. But that means being much closer to the transmitter than you’d need to be with a high-band VHF or UHF signal, as it’s easier to design antennas for those channel that have some gain.

Here’s another problem. The spectrum from 50 to 88 MHz is historically plagued with interference from impulse noise (vacuum cleaners, electric motors, switching power supplies, lightning and other static). And during certain times of the year, atmospheric enhancement of radio signals occurs where distant stations will come in stronger than local stations, creating plenty of interference (ionization of the E-layer of the troposphere, a/k/a “E-skip”).

While the high-band TV channels are also susceptible to man-made and natural interference, it’s not as much of a problem. And UHF TV signals are essentially immune to impulse noise, although they can also experience signal ‘skip’ conditions; particularly in the late summer and early fall with tropospheric ducting.

During one of my RF and wireless classes at InfoComm, we aimed an antenna from the 2nd floor North Hall meeting rooms toward Black Mountain, a line-of-sight path parallel to the Las Vegas Strip, to try and bring up channel 2 (KSNV). Guess what? We couldn’t even find the signal using a spectrum analyzer, due to all an extremely high noise floor of about -50 dBm. (The noise floor at my home office is about -88 dBm, which is moderately quiet.)

Reception of channel 2 became such a problem for KSNV that they eventually relocated to UHF channel 22, where they can easily be picked up with an indoor antenna. But other stations won’t be as fortunate, as the spectrum will be fully packed after this year with no place to move for a ‘do-over’ if reception is a problem.

When the DTV transition happened in June of 2009, three stations in Pennsylvania, New York, and Connecticut had to move to channel 6. It became apparent very quickly that DTV converter boxes weren’t selective enough to reject interference from nearby high-power FM broadcast stations. So WPVI in Philadelphia and WRGB in Schenectady applied for and got permission to double their transmitter power in hopes of fixing the problem.

WPVI’s signal on channel 6 is having a hard time up against the many Philly-area FM stations just higher in frequency.

You can see how much of a challenge this downward move will present to people using indoor antennas. Figure 1 shows how WPVI’s 8VSB carrier looked when I tested the Antennas Direct ClearStream Eclipse loop antenna with an amplifier, while Figure 2 shows channels 9 and 12 with the same rig – but a much lower noise floor. Note the strong FM stations immediately to the right of WPVI, a potential source of interference and receiver overload that would not be an issue on high-band VHF and UHF channels.

This view of WBPH-9 and WHYY-12 shows both carriers standing tall above the noise floor (about -85 dBm) and easy to receive.

Figure 3 shows a bunch of UHF channels received the same way – the Eclipse has some resonance at these frequencies as it is close to a full-wave loop antenna, so indoor reception is relatively easy.

Pulling in UHF TV stations is a much easier task for a small indoor antennas like the Eclipse. A low noise floor (-87 dBm) doesn’t hurt, either.

I have two pretty sophisticated rooftop antenna systems (one on a rotator) and I have trouble picking up KJWP-TV in Philadelphia on channel 2 – the signal breaks up frequently and there’s lots of broadband noise showing on my spectrum analyzer when I point the antenna in that direction. There’s also a station on channel 4 (WACP) that pops in from time to time, although in the other direction toward New York City.

If a station you like to watch has to relocate to the low-rent district, you may need to spring for a better antenna, and it might be larger than some of the indoor models you’re used to seeing. If you are 20 or more miles away from the transmitter, you can forget those small picture frame or box-shaped models – they won’t work.

You might even have to (“gasp!) go back to using a pair of rabbit ears. Yes, they still make these; I found a pair in Best Buy the other day for about $15. Or it might be time to consider an outside antenna, and even that will have to be larger.

I’ll have more news once the spectrum repack is done later this month, and the FCC usually provides a link to a listing of TV station channel assignments. If you live near a large city where most of the high-band and low UHF channels are Being used by major networks, you’re probably not going to see much in the way of musical channels.

But if you live in a market where all of the active channels are on UHF – say, like Syracuse, NY or Scranton/Wilkes-Barre, PA – don’t be surprised when you can’t pick up some of those stations in the future. They might have moved down the street…

 

 

 

Two Keys to Optimal HDR TVs: Dynamic HDR Metadata and Tone Mapping

The Society for Information Display LA Chapter held its 14th annual One-Day Conference on February 3, 2017 at the Costa Mesa Country Club in Costa Mesa, California. At the conference, Gerard Catapano gave a presentation entitled “HDR, Today into Tomorrow.”

Catapano, formerly Associate Director of Electronics Testing at Consumer Reports and now Director of Quality Assurance at Samsung’s QA Lab in Pine Brook, New Jersey, introduced high dynamic range (HDR) as “the latest and most innovative technology that helps film studios deliver a better expression of details in shadows and highlights to the consumer.” He presented the Consumer Technology Association’s definition of an HDR-compatible display as one that has at least these four attributes:

• Includes at least one interface that supports HDR signaling as defined in CEA-861-F, as extended by CEA-861.3.
• Receives and processes static HDR metadata compliant with CEA-861.3 for uncompressed video.
• Receives and processes the HDR10 Media Profile from IP, HDMI, or other video delivery sources. Other media profiles may be supported in addition.
• Applies an appropriate electro-optical transfer function (EOTF) before rendering the image.

The HDR standard has been endorsed by a variety of organizations, include the Blu-ray Disc Association, MPEG, the UHD Alliance, and the ITU. Although HDR is currently a premium feature, Catapano predicted that it will become a basic feature of TVs over all screen sizes and display technologies.

Samsung TV supports only the HDR10 media profile because it is an open standard that does not require licensing fees and, as a result, permits customization with

The CIE 1976 LAB Color Space clearly indicates the range of colors available for each level of luminance.

in the profile. Since use of at least HDR10 is required by the CTA definition of an HDR-compatible display, it will be supported by all major manufacturers.  Catapano noted that at NAB 2016, the major encoder manufacturers were offering 4K HDR as an option, and the major mastering and editing tool sets were implementing it.

The CTA definition only requires HDR sets to support static HDR metadata: metadata that is constant throughout the entire film or video. But much more can be done with dynamic HDR metadata, which changes scene by scene.  SMPTE ST.2094-40 provides for the use of dynamic metadata for tone mapping with HDR10.  In a subsequent conversation, Mindoo Chun, an engineer at the QA Lab, told me the dynamic metadata and tone-mapping technology codified in ST.2094-40 was developed by Samsung and a made available to SMPTE.

Tone mapping is a key technology in HDR TVs, Catapano said. It is a color-volume transform that renders incoming HDR content for a display having a dynamic range that is smaller than that for which the contents were coded. With static metadata, the only way to compress the scene with the greatest color volume so it fits into the set’s color volume is to over-compress the much larger number of less demanding scenes.

With dynamic metadata, each scene can be optimally compressed, with that result that many scenes will not require color-volume compression at all. Catapano observed that Samsung HDR TVs for the 2017 model year “are ready for ST.2094-40.”

An ICC color profile based on CIELAB. As with most real devices, this one can reproduce only a portion of the colors defined in the CIELAB color space.

Let’s say a little more about “color volume.”  The most common way of looking at color gamut is still with the 85-year-old CIE 1931 color diagram, which compresses the luminance (“brightness”) Z-axis so that the color space is pressed into a plane.  With the limited luminance capabilities displays have had until recently, that was a simple and (perhaps) adequate approach.  But with high dynamic range, you lose a lot of information that way.  Over the years many three-dimensional color spaces have been developed, with the CIELAB color space being the most common.  Now you can think of each value of luminance as having a two-dimensional color gamut associated with it, and the entire color volume is the stack of these two-dimensional gamuts running from black to white.  The gamut decreases at low and high luminance values, and one of the things you want to do in HDR  set is to have a relatively large gamut at high luminance levels so bright colors do not wash out.

Tone mapping maps the colors in the program material’s color volume to the smaller color volume of a less capable TV set while providing the best possible picture.  From Samsung’s point of view, it’s very convenient that the OLED TVs of arch-rival LG inherently have a smaller color volume than HDR LCD sets because they have a substantially smaller maximum luminance.  There is much more to say about that, but we’ll save it for another time.

Now, when you go into Costco or Fry’s to buy your next TV set, you can ask the sales associate whether the set supports SMPTE ST.2094-40. I look forward to hearing how that conversation goes.
Ken Werner is Principal of Nutmeg Consultants, specializing in the display industry, manufacturing, technology, and applications, including mobile devices and television. He consults for attorneys, investment analysts, and companies re-positioning themselves within the display industry or using displays in their products. He is the 2017 winner of the Society for Informational Display’s Lewis and Beatrice Winner Award.

You can reach him at kwerner@nutmegconsultants.com.

Turn Back The Clock?

A recent story in the Nikkei Asian Review states that Hon Hai Precision Industries – the new parent company of Sharp Electronics – is considering building an LCD panel facility in the United States. The finished panels would likely be intended for televisions.

According to the story, Hon Hai is responding to President Trump’s call to bring back jobs to the United States. When Hon Hai investment partner SoftBank Group’s chairman Masayoshi Son met with Trump last month, he said that both companies would make “significant investments” to create new jobs in the U.S.

In a related story on the CDRinfo.com Web site, Hon Hai chairman Terry Gou was quoted as saying that he’d consider going ahead with such an investment if “the U.S. is willing to offer land at a cost of US $1 for building the panel plants.” Apparently Apple is also part of the discussion and mentioned as a joint investor.

Gou was also quoted in the CDRinfo story as saying that “…U.S. President Donald Trump should love to see a vertically integrated industry such as panel manufacturing grow and develop in the country.”

Coincidentally, Hon Hai and Sharp are getting ready to break ground on a Gen 10 LCD fab in Guangzhou, China at a cost of $8.69B. That plant is scheduled to open in the fall of 2018. People familiar with the project said the proposed U.S. LCD fab would be of the same size and generation.

While this is an intriguing story, there are caveats. First off; LCD factories are mostly automated – they have to be, considering the manufacturing precision involved – so there wouldn’t be all that many permanent jobs created once construction is completed. (The same thing applies to Intel’s proposed semiconductor fab in Arizona.)

Second, most of the permanent jobs will likely require college degrees in the sciences (physics, engineering, and chemistry), aside from basic factory functions, shipping, and facilities maintenance.

But the biggest obstacle to building the plant will be the finished cost of the panels. There’s a reason why the LCD panel industry (and with it, television manufacturing) is migrating to China: Manufacturing costs there are much lower because labor rates are lower. That, in turn, will make Sharp-branded televisions much more expensive than those coming from Korea and China.

Consumers have been conditioned to expect ever-lower TV prices with ever-larger screens. Consider that you can already buy a 55-inch “smart” Ultra HDTV for $500 now: How will a US-made UHDTV compete against that price?

Consider also that in the 4K TV world, Samsung has over a 30% market share and LG has another 15%. Conversely, Sharp’s current TV market share is less than 1% and its brand doesn’t have anywhere near the cache it once had. So Hon Hai would have to find other customers for its panels to avoid underutilization of plant capacity.

Matters are further complicated by the fact that Hisense currently controls the marketing rights for the name “Sharp” in the United States and has no intention of giving them up. That little dust-up is why Hon Hai cut off supplies of VA LCD panels to Hisense last fall, forcing them to look elsewhere for a supplier.

Of course, there’s been plenty of talk in Washington about slapping 20% tariffs on foreign-made goods. That cost would be passed along to customers, and don’t you think Samsung and LG will adjust their prices as needed to maintain their dominant market shares? The net result would be that Sharp-branded LCD TVs would still languish on store shelves while Samsung, LG, Sony, Hisense, and TCL continued to dominate the market.

The recent election was filled with jingoistic slogans like “Bring Back America.” Well, then – which one? The America of the mid-1980s where the television manufacturing business involved lots of workers on assembly lines, hand-wiring CRT televisions and installing them into cabinets?

Sorry, that ain’t gonna happen. The US TV industry was pretty well decimated by 1986 when Zenith finally threw in the towel on TV production stateside. (Zenith was later acquired by LG Electronics.) The Japanese had our number. Then, the Koreans pulled the rug out from Japan, starting in the late 1990s. And now it’s the Chinese TV manufacturer’s turn to run with the ball.

The widespread availability of inexpensive LCD panels from China is a big reason why you can now afford to buy a 65-inch 4K TV for less than $800, or a 4K HDR model for about a grand. For that matter, you can now pick up a 50-inch Full HD (1080p) LCD TV for less than $300, and 42-inch sets have dropped below $200.

Question: Do you really want to pay 30 – 40% more for a given TV just because it’s made on this side of the Pacific Ocean? I didn’t think so. More expensive TVs will prompt people to delay their TV upgrades for a longer time period, which is exactly what Hon Hai doesn’t want to happen, and can’t afford to have happen if they’ve sunk a few billion dollars into an LCD fab.

Time marches on..

CES 2017: Afterthoughts and Second Thoughts

It’s been a few weeks since the annual extravaganza of consumer electronics in Las Vegas. As usual, it’s difficult to process everything one sees and produce a coherent show review within a few days. There are always products, trends, and demos that one winds up dwelling on for a few weeks. (Sometimes it’s better not to be the first to report on something!)

Overall, the show was busy and loaded with gadgets. Mind you; a good part of those gadgets were “shiny, sparkly” things, such as mobile phone cases with glitter and mirrors. Or must-have accessories, none of which really cost all that much. Numerous booths in the upper and lower South Hall were filled with exactly that, showcased by numerous Chinese/Korean/Taiwanese trading companies you’ve never heard of.

Add in a scattering of U.S. audio companies toward the front of the hall, plus the large areas reserved for AR/VR demos and the drone cages, and that pretty much sums up the South Hall experience. (A continuing puzzler is the presence of the United States Postal Service in the middle of all of these Asian manufacturers and wholesalers.)

In the Central Hall, the show continues to be dominated by the big CE brands – LG, Panasonic, Sony, Samsung, Intel, Qualcomm, Casio, Canon, Nikon, and relative newcomers TCL, Hisense, and Haier (who now owns the GE appliances business and made it a focal point of their booth). And the North Hall is basically divided between audio companies and automobile manufacturers, with the lines often blurring between them.

Much of the new tech appears in the Sands Expo Center, which due to the challenging logistics of travel, I don’t focus on much. There’s another crop of audio companies set up on the upper floors of the Venetian Hotel, and other venues host a variety of small, table top expos like Digital Experience and ShowStoppers.

So the first trend that jumped out at me is just how many of these Asian manufacturers and wholesalers have taken over the show. In the past, I’ve joked about large parts of the South Hall becoming the “Chinese Electronics Show,” but that’s a pretty good description of what you see there.

Shiny, sparkly stuff everywhere!

Another trend you couldn’t miss is just how important appliances have become to the product lines of companies like Panasonic, LG, and Samsung (not to mention Haier and Hisense). That shouldn’t come as a surprise – there’s much more profit in refrigerators, washers, dryers, and even things like the induction oven Panasonic showed this year when you compare appliances to the former kings of CES, televisions.

That’s not to say television isn’t important anymore. But when the amount of booth space devoted to TVs continues to shrink while the square footage given to appliances is growing, it doesn’t take long to connect the dots. In fact, more of the TV demos focused on the underlying technology than on specific lines or models. And right now (while this is being written), I can walk into Best Buy and pick up with a 55-inch LG Ultra HDTV with Web OS for all of $500 – or walk out with a 55-inch Hisense version with basic HDR support for the same price.  (Remember the good old days, when a 50-inch 1080p plasma TV cost $5,000?)

So it doesn’t make as much sense for manufacturers to invest a lot of time and money into promoting a category of products which has slim profit margins to begin with. But those ‘connected’ refrigerators? Dual-chamber washing machines? Cool kitchen gadgets? Now, there’s where a decent profit can be made, especially when you can sell a swath of these products in a bundle for consumers who are remodeling kitchens.

Never heard of Skyworth? Don’t worry, you will…

 

Appliances are where the action (and money) is these days.

One area that was disappointing was wireless connectivity – specifically, 60 GHz WiFi and wireless USB. Although I did mention some impressive demos from Peraso in my post-show coverage, I was surprised to see little space Qualcomm gave to 802.11ad products, particularly after the impressive demos shown last year. Despite the unique advantages of wireless operation in this band – limited, secure in-room connectivity with high bit rates over large channels – we’re still not seeing enough in the way of finished products.

Although other press accounts have talked about voice recognition being a big deal at the show (mostly with the autonomous car demonstrations), I didn’t see much that really wowed me. In past years, Conexant had excellent demos of voice recognition in noisy environments, but either they didn’t exhibit or didn’t reach out to me as they have in the past. The same observation applies to gesture recognition – there were some interesting products here and there that used a basic implementation, but nothing earth-shaking.

I mentioned augmented reality and virtual reality. From my view, the biggest problem with VR taking off in a big way is the size and weight of the headsets. Sure, we’ve all seen the Samsung Galaxy VR TV commercial where everyone is “thrilled” to get a VR (Oculus Rift) headset for Christmas, and they all “ooh!” and “ahhh!” at the VR experience.

Wearing VR headsets isn’t as comfortable as it looks…

What we don’t see is people taking these headsets off and putting them aside after the initial VR novelty wears off and sore necks start to manifest – not to mention possible problems with nausea due to a disconnect in the brain between perceived motion and actual motion. The latter is a real problem, similar to the issues with failed stereoscopic perception revealed by the roll-out of 3D seven years ago.

That’s not to say there isn’t a market for VR. There definitely is, but by my back-of-the-envelope calculations, we will need about 8K pixel resolution per eye to make it really work. (Some VR manufacturers and users are advocating for 11K per eye, refreshed as fast as 120 Hz to eliminate flicker.) With AR, on the other hand, things are much farther along, as Kopin demonstrated with its 2K x 2K near-to-eye OLED microdisplay fitted to a firefighter’s oxygen mask for search and rescue.

I may have said this before, but it’s worth repeating: LEDs are simply dominating the display sector. From the white LEDs with color filters used in conventional LCD TVs and the blue LEDs combined with quantum dots in HDR/WCG UHDTV models to organic white OLEDs with color filters in Ultra HDTVs, RGB OLEDs in smartphones and tablets, and the new super-small “micro” LEDs that make up the building blocks of super-bright, colorful videowalls with as much as 8K resolution…LEDs are basically taking over the world. (And I left out automotive displays and lights, appliances, indoor and outdoor lighting, and indicator lamps.)

How’s this for a cool keyboard design, which each key illuminated by a micro LED?

About the only area left to mention is the ever-growing Internet of Things trend. It was impossible to keep tabs on all of the IoT products at the show – remote pet food dispenser monitors, heart monitors, water quality monitors, connected TVs, massage chairs, doorbell cameras, connected appliances, home security systems, teenage driver monitors, control systems, and of course a slew of connected sensors in the most advanced car designs.

Memo to those readers in the commercial AV industry: If you haven’t figured out that room control systems for AV gear, lighting, shades, thermostats, audio, screens, and projectors are all entering the IoT world and leaving behind clunky, proprietary and expensive programming systems – well, that train is leaving the station, and you’d better not miss it.

As for interfacing all of this gear, we’re seeing a slow and steady move to the next-generation USB connector (version 3.0 Type-C) for new laptops and eventually, tablets and smartphones. Given that USB Type-C can also support display connections like HDMI and DisplayPort, that’s one or two less connectors to deal with. And given a move to AV-over-IT connectivity, we may be more concerned with USB-based switching and distribution equipment – or we’ll just encode all of our video and audio to JPEG2000, M-JPEG, H.264, or H.265 and use conventional fast network switches to do the job.

See you in Vegas next year?