Category: The Front Line

R.I.P For Home Theater Projectors?

Recent trends in large flat screen displays have me wondering if we are seeing the beginning of the end for home theater front projection. (We are already seeing pressure on front projection for commercial markets, but that’s a topic for another time.)

Earlier this month, both Samsung and LG announced they would release 80-inch-class 8K displays for the home. For Samsung, it’s an 85-inch 8K LCD with quantum dot backlights for supporting high dynamic range, while LG moves forward with an 88-inch 8K OLED, also HDR-compatible but not nearly as bright as the Samsung offering.

Wait – what? 8K TVs for the home!?!? you’re probably thinking. Yep, 8K is here, and wow, did it arrive in a hurry! That’s because the Chinese manufacturers have basically collapsed pricing in the Ultra HDTV market over just three short years. You’d be nuts NOT to buy a new Ultra HDTV with prices this low, as some models can be had with HDR support for just $9 per diagonal inch.

We already have an abundance of 80-inch-class Ultra HD flat screen displays and their prices are quite reasonable. A quick check of the Best Buy Web site shows Sony’s XBR85X850F for $3,999. It’s an 85-inch LCD with HDR and “smart” connectivity. The same page listed a Samsung QN82Q6FNAFXZA (82 inches, QLED) for $3,499 and Samsung’s UN82NU8000FXZA (82 inches, HDR, QLED) for $2,999.

Got a few more bucks in your pocket? For $19,999, you can have the new Samsung QN85Q900RAFXZA, a top-of-the-line Ultra HD QLED TV. For $14,999, you can pick up LG’s OLED77W8PUA 77-inch OLED (not quite 80-inches, but close enough). (And for you cheapskates, there were several Ultra HDTVs in the 75-inch class for less than $2,500.)

Sony’s 85-inch XBR85X850F has the same retail price as a Full HD LCD projector did ten years ago. And you can lose the screen.

If you currently have a home theater, chances are the projection screen is in the range of 80 to 90 inches. Just two years ago, replacing that setup with a flat screen LCD would have been quite an expensive proposition. But today, you can purchase one of those 80+ inch beauties for less than what a 50-inch Pioneer Elite plasma would have cost ten years ago. (And 50 inches seems pretty small now, doesn’t it?)

When I last upgraded my home theater (which was around 2006-2007), I replaced a Sony CRT projector with a Mitsubishi HC5000 (later an HC 6000). That was a Full HD 3LCD model with beautiful color management. I’ve thought about upgrading it over the years even though I hardly use the theater anymore. But looking at these prices, I’d probably be better off just removing the projector and screen and moving to a one-piece flat screen setup.

There are a bunch of reasons why that would be a good idea. For one thing, I have a few older home theater projectors left in my studio and all of them use short-arc lamps that contain metal halides of mercury. If I was to upgrade to a new projector, it would have to use an LED illumination system – and those are still more expensive with 4K resolution than flat screen TVs.

Second, I could get rid of my 92-inch projection screen and hang some more art on the wall. (It previously replaced an 82-inch screen, and frankly, that was large enough for the room.) I could also eliminate a ceiling power and AC connection and a bunch of wiring from my AV receiver. All of that stuff would be consolidated in a small space under the new TV. (Who knows? I might even go ‘commando’ and just use a soundbar/subwoofer combination!)

I’m sure I’m not the only person who (a) built a home theater in the late 1990s, (b) upgraded the main family room/living room TV to a large, cheap flat screen a decade later, and (c) now spends more time watching that family/living room TV than using the home theater. Mitsubishi exited the projector business almost eight years ago, so I’d never be able to get my 6000 fixed. (But I hardly use it anyway, so who cares?)

Even a 75-inch TV would work, and there are plenty of those available at bargain-basement prices. Hisense showed an HDR Ultra HD model (75EU8070) for just a hair over $1,000 and Vizio’s E75-E3 will set you back only $300 more. For those prices, you can hardly go wrong – if you don’t like it a year from now, just recycle it and buy a new one (for less money).

There’s a parallel trend in movie theaters, where the first fine-pitch LED displays are making tentative steps toward replacing high-powered projectors.  Pacific Theaters Winnetka in Chatsworth, California installed a 34×17 Samsung fine-pitch LED screen last year and claims it can hit higher levels of peak brightness (3,000 – 4,000 cd/m2 shouldn’t be difficult) for true high dynamic range. And of course, LEDs can achieve an enormous color gamut and very deep blacks when off, characteristics of emissive displays.

With ongoing developments in LED technology, we’re likely to see more theaters adopt the LED platform – no projection lamp to replace, because there’s no projector to operate. There are issues about aspect ratios and content formatting to resolve, but we figured them out for digital cinema when we turned our backs on motion picture film.

So why not have our home theater work the same way and get rid of the projector? For that matter, it’s possible and even likely within a decade that LCD and OLED TVs will both be replaced by fine-pitch or ‘micro’ LED displays, giving us the same experience as a state-of-the-art theater.

And home theater projectors will wind up curiosities of an earlier age, like Super 8mm and slide projectors…something Grandpa and Grandma used, along with optical disc players……

Spectrum Repacking and Channel Scans

In the wake of last year’s big spectrum auction, the FCC is chopping even more spectrum away from UHF TV stations and expecting (somehow) to jam all the remaining TV stations into low band VHF (2-6), high band VHF (7-13), and truncated UHF (14-36) channels.

In my neighborhood, stations are already packing up and moving. While conducting a recent test of a “smart” indoor UHF TV antenna, I grabbed some spectrum analyzer plots of all three television frequency bands. As expected, the RF spectrum from channel 56 to 87 (channels 2-6) was largely unusable due to high levels of impulse and main-made noise.

The high band VHF spectrum wasn’t much better, with some continuous RFI kicking up the noise floor by almost 20 dB. But it was the UHF spectrum I was interested in, and several former broadcasters were noticeable by their absence. Channels 29, 35, and 39 – previously in use for Univision, independent, and PBS stations – had all gone dark.

To get around the lack of available channels, TV stations are “channel sharing,” something the FCC frowned on as recently as a decade ago. What that means is that stations divvy up the available bits in an MPEG2 encoder and multicast several minor channels on one physical RF channel. This technique was almost impossible to pull off twenty years ago when digital TV broadcasts and HDTV were just getting started.

Now, thanks to very powerful processors and tricks like adaptive variable bitrate encoding and statistical multiplexing (a/k/a “stat muxing”), it’s not difficult at all, even though the jury is still out on the quality of HD and SD video using much lower bit rates that were not possible in 1998. NBC has done this in Philadelphia and New York, combining Telemundo channels with NBC programming and making room for one HD service from each.

Locally, an independent station in Allentown (WFMZ) will relinquish its 5-megawatt signal on UHF-46 and move to VHF-9, sharing bits with WBPH and the Lehigh Valley PBS station, WLVT (formerly on channel 39). This will have happened by the time you read this column and I’ll be curious to see just how much image quality has deteriorated for each minor channel after the new transmitter lights up.

Keep in mind that many stations auctioned off their channels in return for a nice pay day. Public stations in particular pocketed some serious change, money that went into facilities upgrades and balancing their budgets. If their multicast services hold up well with the latest in MPEG2 encoding, then they’ll come out of this smelling like a rose.

What this means to you as an OTA viewer is that you will need to re-run channel scans to catch all of these moves – otherwise, you’ll tune to a channel that has gone dark and will be standing there, scratching your heads in bewilderment. I’d perform a channel scan twice a month from now through the end of the year. (You might also pick up some newer, low-power translators and repeaters along the way, and you may find some channels are gone for good.)

Blu-Ray: On The Endangered Species List?

One of the problems with market research is that you often wind up with conflicting data from two or more sources. Or, the data presents a “conclusion” that’s all too easy to “spin” to advance an argument or make a point.

Ever since the two adversaries in the blue laser optical disc format squared off with pistols at twenty paces in 2008 (and one lost), the clear trend of media consumption has favored streaming and digital downloads. Entire business models have collapsed as a result, including Hollywood Video and Blockbuster Video sales and rental stores. The last two Blockbuster outlets in Alaska are closing, leaving just one solitary brick-and-mortar operation in Oregon.

With Netflix now serving over 100 million subscribers around the world and Amazon rumored to be working on a smart TV for delivering Prime video, the tide hasn’t stopped rising. Purchases of digital downloads and streaming media surpassed physical media in dollar value way back in 2015 and the gap continues to widen as more customers take advantage of fast broadband, smarter DVRs, and improved codecs for reliable delivery of Full HD AND 4K video over networks.

My industry colleague Greg Tarr recently posted a story on the HD GURU Web site quoting NPD Group analyst Stephen Baker as saying that, “…Ultra HD Blu-ray player sales increased by more than 150% over 2017 and the revenue is up 61%. The {Average Selling Price] ASP is $165 this year compared to $272 for the first 5 months of 2017.” Baker further pointed out that that sales of Ultra HD Blu-ray players in the United States increased 82% in May and revenue increased 13% with an ASP of $168. NPD estimates that 4K Ultra HD players represented about 15% of Blu-ray unit sales for the first five months of 2018.

Well, that certainly sounds like great news, doesn’t it? But some perspective is in order.

First off, all of these $168 players (which once cost north of $300 – $500 not long ago) also have built-in WiFi connections and can stream content from the likes of Netflix, Amazon, YouTube, and Hulu. And of course, they’re backward-compatible with standard Blu-ray, DVD, and CD audio formats.

Given the ridiculously low prices on Ultra HDTVs these days (such as 55-inch models with HDR 10 support for as low as $450), many consumers may simply be in a major TV and home entertainment upgrade cycle. I bought my first 1080p TV in 2008, a 42-inch Panasonic plasma, for about $1200. And I’m now ready to upgrade from a 2012-vintage, 47-inch 1080p LCD model, to a 55-inch or 60-inch smart 4K set, which with HDR support will cost me about as much as that 42-inch Panasonic from 2008.

Will I pick up an Ultra HD player too? Hey, for $150, why not? And will I watch a lot of UHD Blu-ray discs on it? Probably not, since I will be able to stream Netflix and Prime video at 4K resolution. Will that streamed 4K content look as good as a physical disc playing out at more than 100 Mb/s? Maybe not, but on the other hand, I won’t have to buy or rent any more discs. And based on my experience the other night watching “The Catcher Was A Spy” from Amazon Prime, I will be quite happy with the result.

Yes, you can buy a 4K TV at Shop Rite, available in the bread aisle. (Photo courtesy Norm Hurst)

As the saying goes, facts are stubborn things. The facts are; physical media sales have been in slow and steady decline for over a decade (and continue to decline) and Ultra HD BD disc sales constitute a small portion of overall media consumption. For that matter, so do sales of players: Research firm Futuresource predicts that global UHD Blu-ray player unit shipments should hit just 2.3 million, with more than 50% of those sales taking place in North America.

To put that in perspective, ABI Research forecasts that worldwide Ultra HD flat panel TV shipments will surpass 102 million in 2018, representing 44% of all WW flat panel TV shipments (about 232 million). So even with “record” sales growth, Ultra HD Blu-ray player sales will only constitute about 2.2% of Ultra HDTV sales, with the bulk of those player sales taking place in North America and Europe.

ABI also predicts that just shy of 200 million Ultra HDTVs will be sold in 2023 worldwide, with the majority taking place in China (which doesn’t use our Blu-ray format but instead relies on “China Blue,” the old HD-DVD standard). Coincidentally, Tarr’s article states that, “…market research predicts that blue laser optical disc player shipments will decrease from 72.1 million in 2017 to 68 million in 2023. Unit shipments for the global Blu-ray media market are expected to decrease from 595 million in 2017 to 516 million in 2023.”

That trend would seem to be at odds with TV purchases, according to an April press release from Futuresource. “We believe 4K UHD TV sets will ship over 100 million units this year, equivalent to two-thirds of the entire large screen market,” comments David Tett, Market Analyst at Futuresource Consulting. “Consumers increasingly want larger screens, and this is playing nicely into the 4K UHD proposition. HDR is expected to be present in 60% of 4K UHD sets this year.”

Digesting all of this data reveals that (a) 4K TV sales continue grow to worldwide (which is also being driven by a changeover from Full HD to 4K TV fab production, but that’s another story), (b) 4K TV sales will constitute an ever-larger percentage of overall TV sales by 2023 – if not close to 90%, (c) more and more consumers are streaming and downloading digital video than purchasing optical discs, (d) even with strong sales through the first six months of 2018, Ultra HD Blu-ray players are selling at a rate of just two for every 100 Ultra HDTVs purchased, and (e) overall sales of Blu-ray players of all kinds are in steady decline.

I fully expect to hear all of the arguments for UHD Blu-ray, picture quality being one of them. But if I can stream UHD content with HDR at acceptable quality levels, why do I need to buy discs? I’ll have access to an enormous cloud library and I’ll be more environmentally conscious, too. Besides, I rarely watch a movie more than once (look at the piles of old DVDs people try to get rid of at garage sales or foist on libraries). There’s plenty of good content available from video-on-demand.

Ultra HD video content with HDR @ 16 Mb/s that looks as good as UHD Blu-ray? Yep, Fraunhofer IHS showed it at NAB 2016.

And UHD BD supporters neglect to consider all of the continual advancements being made with codecs. A couple of years ago, Fraunhofer showed absolutely stunning Ultra HD video with dynamic HDR on a 65-inch UHDTV, encoded with HEVC H.265 at an average bit rate of 16 Mb/s – 15% of the peak streaming rate for Ultra HD Blu-ray – and they were encoding tricky stuff like confetti, wind-whipped waves, and moving objects with plenty of changing specular highlights. All heavy lifting.

Granted, it took two computers to do the software encoding and decoding. But those two computers can easily be reduced to a set of chips with firmware and a powerful CPU and installed inside my next TV.

So what would I need an optical disc player for?

InfoComm 2018 In The Rear View Mirror

If you managed to make it out to this year’s running of InfoComm, you might have summarized your trip to colleagues with these talking points:

(a) LED displays, and

(b) AV-over-IT.

Indeed; it was impossible to escape these two trends. LED walls and cubes were everywhere in the Las Vegas Convention Center, in many cases promoted by a phalanx of Chinese brands you’ve likely never heard of. But make no mistake about it – LEDs are the future of displays, whether they are used for massive outdoor signage or compact indoor arrays.

With the development of micro LED technology, we’re going to see an expansion of LEDs into televisions, monitors, and even that smart watch on your wrist. (Yes, Apple is working on micro LEDs for personal electronics.)

Projector manufacturers are understandably nervous about the inroads LEDs are making into large venues. Indeed; this author recently saw Paul Simon’s “farewell tour” performance at the Wells Fargo Center in Philadelphia, and the backdrop was an enormous widescreen LED wall that provided crystal-clear image magnification (very handy when concertgoers around you are up and dancing, blocking your view of the stage).

 

As for the other talking point – well, it was impossible to avoid in conversations at InfoComm. Between manufacturers hawking their “ideal” solutions for compressing and streaming audio and video and all of the seminars in classrooms and booths, you’d think that AV-over-IT is a done deal.

The truth is a little different. Not all installations are looking to route signals through a 10 Gb/s Cisco switch. In fact, a brand-spanking-new studio built for ESPN in lower Manhattan, overlooking the East River and the Brooklyn Bridge, relies on almost 500 circuits of 3G SDI video through an enormous router. Any network-centric signal distribution within this space is mostly for IT traffic.

That’s not to say that installers are poo-pooing AV-over-IT and the new SMPTE 2110 standards for network distribution of deterministic video. It’s still early in the game and sometimes tried-and-tested signal distribution methods like SDI are perfectly acceptable, especially in the case of this particular facility with its 1080p/60 backbone.

Even so, the writing on the all couldn’t be more distinct with respect to LEDs and network distribution of AV. But there were other concerns at the show that didn’t receive nearly as much media attention.

At the IMCCA Emerging Trends session on Tuesday, several presentations focused on interfacing humans and technology. With “OK Google” and Alexa all the rage, discussions focused on how fast these consumer interfaces would migrate to AV control systems. An important point was made about the need for two-factor authentication – simple voice control might not be adequately secure for say, a boardroom in a large financial institution.

What would the second factor be? Facial recognition? (This was a popular suggestion.) Fingerprints? Retinal scans? A numeric code that could be spoken or entered on a keypad? The name of your favorite pet? Given that hackers in England recently gained access to a casino’s customer database via an Internet-connected thermometer in a fish tank, two-factor authentication for AV control systems doesn’t seem like a bad idea.

Another topic of discussion was 8K video. With a majority of display manufacturers showing 4K LCD (and in some cases OLED) monitors in Vegas, the logical question was: Could resolutions be pushed higher? Of course, the answer is a resounding “yes!”

Display analysts predict there will be over 5 million 8K televisions shipped by 2022 and we’re bound to see commercial monitors adapted from those products. But 8K doesn’t have to be achieved in a single, stand-alone display: With the advent of smaller 4K monitors (some as small as 43 inches), it is a simple matter to tile a 2×2 array to achieve 7680×4320 pixels. And there doesn’t appear to be a shortage of customers for such a display, especially in the command and control and process control verticals.

The other conversations of interest revolved around the need for faster wireless. We now have 802.1ac channel bonding, with 802.11ax on the horizon. For in-room super-speed WiFi, 802.11ad provides six channels at 60 GHz, each 2 GHz wide or 100x the bandwidth of individual channels at 2.4 and 5 GHz.

But wise voices counsel to pay attention to 5G mobile networks, which promise download speeds of 1 Gb/s. While not appropriate for in-room AV connectivity, 5G delivery of streaming video assets to classrooms and meetings is inevitable. Some purveyors of wireless connectivity services like AT&T and Verizon insist that 5G could eventually make WiFi obsolete. (That’s a bit of a stretch, but this author understands the motivation for making such a claim.)

The point of this missive? Simply that our industry is headed for some mind-boggling changes in the next decade. Networked AV, LEDs, 8K video and displays, multi-factor authentication for control systems, and super-fast wireless connections are all in the wings.

And if you were observant at InfoComm, you know it’s coming…and quickly.