Category: Archives

Classic Pete: Once More, Out To The DTV Fringe

Recently, I made a third trip to my brother’s house in the hills of southwestern Vermont to finish what I started over two years ago – set up this distant, remote location to receive every digital TV channel from Albany. And I succeeded.

 

 

My first visit in May of 2007, chronicled here, showed that a modest suburban UHF yagi (Channel Master’s model 4308) and a low-noise preamp was sufficient to pull in four Albany DTV stations over a 54-mile path by taking advantage of knife-edge refraction of the RF signals, bending over a range of hills about ½ mile to the southwest of the house.

I was surprised at how strong the “bent” signals were, even with moderate multipath distortion. But they came in just fine on a pair of Gen5 ATSC DTV receivers, with minor interruptions in service during periods of heavy rain or dense fog.

Still, I hadn’t resolved the issue of receiving a pair of high-band Albany VHF DTV channels – WXXA-7 (Fox) and WNYT-12 (NBC). That would be addressed during my next visit in early January of this year, and you can read about it here. Trust me; it wasn’t much fun working outside in sub-zero temperatures. And I didn’t have the best antenna for the job, relying on a used Terk TV35 suburban VHF/UHF yagi to pull in the signals, aided by a dual-band, low noise preamplifier.

I knew a third and final tweak to the system would inevitably be in order, particularly to improve the reception of WXXA-DT. Plus, WRGB-DT (CBS), previously operating on UHF channel 39, was scheduled to move back to VHF channel 6 on June 12 as the analog TV shutdown was completed. And another Albany DTV station, WNYA (MyTV), hadn’t even signed on yet- they were still waiting for WNYT to vacate their analog signal from channel 13.

 

 

THE FINAL PUZZLE PIECE

The first order of business was to replace the Terk TV35 with a more serious VHF yagi. Fred Lass, chief engineer at WRGB, kindly sent along a pair of Antennacraft Y5-2-6 low-band VHF yagis for the job, but those wouldn’t help me with channels 7, 12, and 13.

Instead, I opted for the Antennacraft CS600 VHF yagi, which would provide reception from channel 2 through 13 and which (according to the specs) was good for up to 40 miles on low-band VHF and 50 miles on high-band VHF. Coupled to the Channel Master #7777 dual-band preamp, I figured it would be enough.

The next step was to check reception from the January installation by recording new spectrum analyzer plots and comparing them to the screen grabs I captured eight months ago. Good news – the 8VSB carriers from the remaining UHF stations (WTEN-26, WMHT-34, and WCWN-43) hadn’t changed any, even with all the nearby trees fully leafed out.

Unfortunately, signals from WXXA-7 and WNYT-12 didn’t look too good, thanks to a broken rear reflector element on the TV35. So, I removed the Terk from the system and assembled the CS600. I also had to install a second, offset antenna mast to clear the rear elements of the CS600 from the deck supports, not to mention a large rose bush which had grown around the mast and TV35!

 

 

 

 

 

To make everything fit in this tight space, I drilled a set of new boom-to-mast bracket holes near the rear of the CS600. The antenna is light and sturdy enough to be mounted this way, although I recommend using the standard mounting holes when up on a rooftop mast to balance the antenna and reduce wind load.

From my January escapades, I found that the TV35 worked better when it was offset about 30 degrees farther west from the UHF antenna heading. I chalked that up to different reflections of the knife-edge signal than I had seen on UHF, and initially installed the CS600 at the same height, facing in the same direction.

A quick test with a Zenith DTT901 NTIA converter grabbed WRGB-6, WNYT-12, and newcomer WNYA-13 with no difficulty. But WXXA-7 was intermittent, and now WMHT-34 (PBS) was becoming problematic to receive. This wasn’t going to be easy! (It never is…)

ZEROING IN

In my January conversations with Fred Lass, he mentioned that the refraction angle for channel 6 could be more severe than that of the UHF DTV stations. That meant I might have more luck if I lowered the CS600…and that’s exactly what happened.

After a night to clear my head and socialize with my relatives, I walked outside early the next morning, connected my spectrum analyzer, loosened the mast bracket, and lowered the CS600 to within a foot of the ground. I also rotated it south to the same antenna heading (230 degrees) that I eventually used to clean up reception of WMHT-34 on the Channel Master 4308.

 

After firing up the DTT901, I was finally done. All eight of the Albany DTV stations were now coming in reliably, free of dropouts. WXXA-7’s waveform, although still somewhat bowed, was considerably cleaner than before. And a modest amount of tilt on WNYT-12 and WNYA-13 was no problem even for the adaptive equalizers in my Gen 5 OnAir Solution HDTV-GT receiver.

In fact, I had enough signal out of the CM 7777 preamp to run a second coaxial drop upstairs to a bedroom, feeding a second DT901 converter box with the same results. Oddly, WRGB’s signal on channel 6 remained consistent through the CS600 at any height and with either of the compass headings I used. The 8VSB carrier wasn’t perfectly level, but the converter boxes and HDTV-GT locked it up quickly every time.

 

PROBLEM SOLVED

When TV signals bend, they really bend! Knife-edge refraction works so well at this location that I actually received all of the Albany DTV channels with the CS600 resting nose-down on the ground and its rear elements tilted up at a 45-degree angle against the mast! That certainly was cool.

The only weather effects I observed happened the last night of my stay, when dense clouds of moisture formed in the valley right before a strong weather front passed through. The resulting mist and fog caused ABC affiliate WTEN-DT’s signal on channel 26 to break up on a regular basis, while all other channels were unaffected. The next morning, all was well again. (Coincidentally, I’ve observed the same effect at home on Philadelphia’s KYW-DT, also transmitting on channel 26 and otherwise a very strong and reliable signal.)

Because the CS600 sits so low on the mast, I wrapped the longest elements with bright orange electrical tape so no one would walk into it. I also capped the swaged ends of the elements with plastic bolt protectors, glued in with silicone seal. Some new flower plantings around the antenna should keep visitors from accidentally walking into it in the future. (Don’t these problems sound ridiculous?)

 

 

Now, my brother and sister-in-law are going to try terrestrial digital TV for a month and see if they still want to pay for their existing DirecTV service. Given how little television my brother watches, I think I know how he’ll cast his vote, but I’m not sure about his wife.

I will say that she showed remarkable enthusiasm for finally having gained access to “free TV,” and she subsequently informed me that there would be a stampede for my services from nearby neighbors who’d also want in on this deal. Maybe it’s a good thing that I live almost 300 miles away?

I’m also amazed at how robust the 8VSB DTV system turned out to be, and how it’s perfectly suited to unusual propagation paths like this one. Granted, I also pulled in analog VHF and UHF TV stations with the earlier antenna setups, but the signals were fairly noisy and had more than a few ghosts, as you might expect.

Digital TV cleans all of that up. All you need is enough signal to get over the required carrier-to-noise threshold (in this case, about 20 dB C/N), and voila – perfect pictures and audio. (Never mind that a few of them were infomercials.) The fact that converter boxes and new integrated digital TV sets are largely using Generation 6 adaptive equalizers is just icing on the cake.

 


Any disappointments? Well, I never could pull in WYPX-50 from Amsterdam, although it’s strong enough to show up on my spectrum analyzer. The problem is their transmitter location, much farther west than the Helderberg Mountain antenna farm used by everyone else. That would require “sacrificing the good of the many for the good of the one” (to misquote Mr. Spock from Star Trek II: The Wrath of Khan).

Also, I could see another 8VSB carrier on channel 9 from WVER (Vermont Public Television) in Rutland, Vermont. But to receive that station would have required divine intervention, as the signal was coming from the opposite direction, 34 miles to the north/northeast over a tall range of hills, including Mt. Equinox (3,848’ ASL), and ricocheting off the 1300-foot-tall ridge in front of the house. Now, THAT would have been one heck of a billiards shot!

The good news is, if you live in a “tough” DTV reception location, you may not be completely out of luck. It helps if the DTV stations you want to receive are co-located, because having only one antenna heading to deal with is a real blessing. But there’s no reason why you couldn’t succeed with a broader antenna pattern if DTV stations are spread farther part – you just need to get enough signal to the receiver, and you’re home free.

As they used to say in those old Westerns, “Looks like my work here is done.” Time to saddle up, and head off in search of the next fringe…

Classic Pete: I’ve Got the Low-Band DTV Blues…

Did DTV channel 6 disappear on your converter box or digital TV after June 12? Here’s why it may be “MIA”…and what you may be able to do about it.

One of the more interesting stories that has developed following D-Day (June 12) is the trouble that viewers are having in several large markets with low-band TV channels – specifically, channel 6, which is now digital in Albany, NY; Philadelphia, PA, New Haven, CT, and five other TV markets.

There have also been reports of difficulty with stations on channel 7, most notably WLS in Chicago and WABC in New York City. The situation there is quite different, but we’ll take a quick look at it at the end of this article.

THE OP-ED SECTION

First off, let it be said that the FCC’s decision to retain channels 2 through 6 in the DTV channel core was ill advised. These are some of the oldest TV channels in existence and used to be the prime spots for a TV station, since they were the lowest channel numbers on tuners.

But the frequencies in which these channels are located – specifically, from 55 MHz to about 88 MHz, give or take several kilohertz – have long been plagued with impulse noise, such as you’d get from noisy fluorescent lamp ballast, brush motors, or any electronic equipment that creates inductive voltage spikes.

To make matters worse, seasonal signal propagation enhancement, caused by sporadic ionization of the ionosphere’s E-layer, can cause signals on these frequencies to hop across the country and create co-channel interference many thousands of miles away. Ham radio operators like myself refer to this summertime phenomenon as “E-skip,” for short.

Here’s another reason why channels 2 through 6 should have been retired: They require very large antennas for efficient reception. A full-wave loop antenna for channel 2 (56 MHz) would measure 5.4 meters in length, or about 17.5 feet! (Contrast that with a full-wave loop for UHF channel 42, which would be about 18 inches around.)

This makes it problematic to design an indoor antenna with any kind of gain, short of adding an internal amplifier. Unless that amplifier’s design is bullet-proof (and for normal Radio Shack prices, it usually isn’t), the antenna system will be overwhelmed with noise and interference from other nearby RF signals, such as FM radio stations.

THE CHANNEL SIX CONUNDRUM

But that’s water under the bridge now, and 40 stations have decided to stay put on this not-so-valuable real estate. As a result, I’m getting quite a few emails about some bizarre low-band VHF reception issues.

My favorite so far is from a television station monitoring service, whose rooftop channel 5 antenna in West Virginia is being routinely wiped out every day by fluorescent lights in the Ace Hardware below, during normal store hours. (Not impossible to fix, but it will take some detective work.)

Getting back to my home market of Philadelphia, there are plenty of problems with reception of WPVI’s digital signal on channel 6. And it became evident pretty quickly that WPVI was having these problems just 24 hours after shutting down their analog signal on channel 6.

Subsequently, WPVI and CBS affiliate WRGB in Schenectady, NY (also on channel 6, and also experiencing reception issues) applied to the FCC for an emergency authorization to go to higher power.

According to  a news story in the June 22 issue of Broadcasting and Cable magazine, “…The FCC granted the station (WPVI) a special temporary authority (STA) to boost its transmission power on Ch. 6 from the relatively low 7.5 kilowatts (kW) to 30.6 kW, the maximum power for the northeastern “Zone 1” region of the U.S.”

Figure 1. WPVI’s DTV signal on VHF channel 6, seen at 1:00 PM on June 12. Each of the sharp, rounded signals to its immediate right are FM radio stations.

WPVI’s original digital signal on June 12 at 1 PM, as seen in Figure 1, wasn’t too shabby to begin with, and I could receive it quite easily on both my rooftop and attic antenna systems. It also came in nicely near the southwest wall of my house, on both floors, while using Eviant’s T7 Card portable digital TV set.

But there are always devils in the details, and you can see them quite clearly immediately to the right of WPVI’s flat-topped 8VSB carrier. Those numerous rounded peaks are FM broadcast stations, the closest of which is on 88.5 MHz (WXPN). Almost immediately adjacent is WRTI’s FM operation on 90.1, followed by WHYY on 90.9, etc.

So, what’s the problem? Those FM stations are co-located at the Roxborough TV tower farm, NW of Center City. And they present very strong signals that can slip through the filters in NITA converter boxes, resulting in interference to the channel 6 signal. What’s more, FM and TV signals mixing in converter box receivers will produce sum and difference frequencies that wind up right in a portion of the channel 6 spectrum.

So what’s likely happening is that closer-in TV viewers, who probably don’t have really long rabbit ears (a full-wave loop @ 85 MHz measures 3.53 meters, or 11.6 feet) are trying to pull in a signal that’s competing with strong, adjacent-channel signals from FM  broadcasters. Toss in the usual elevated noise floor from arc lamps, power transformers, air conditioning compressors, and refrigerator motors, and you have a sticky wicket indeed!


Figure 2. WPVI’s “boosted” DTV signal, as seen at 9:45 AM on June 22. It’s about 6 dB stronger than before.

Figure 3. This wide view of the TV spectrum from channel 2 to channel 13 shows how strong WPVI’s new signal is, compared to WBPH-9 and WHYY-12 (far right).

WPVI’s Special Temporary Authorization (STA) from the FCC definitely resulted in a stronger signal, as seen in Figure 2. And Figure 3, which shows a wider view of all low-band and high-band VHF channels, plus the FM band, reveals that WPVI’s broadcast is now the strongest TV signal coming out of Philadelphia. (Notice the comparatively weaker signal from WHYY-12, the 8VSB carrier to the far right.) But is WPVI even strong enough now?

In both of my spectrum analyzer screen grabs, you may notice that the FM radio station carriers get progressively weaker as the frequency increases. That’s because I’m using an FM trap to try and attenuate them. But that filter simply isn’t sharp enough to subdue WXPN, WRTY, and WHYY without also affecting the strength of WPVI’s signal.

Only precision signal filters with multiple poles and what we call “Hi-Q” sharp filter skirts can solve this problem. Except that filters like that are VERY expensive to manufacture, and not something you’d put into a $59 converter box or a $500 TV set.

The adjacent channel overload problem is compounded by the use of circular signal polarization from FM stations. This is done among other reasons so that their broadcast signals remain moderately stable in as your drive around in your car. But that’s no help to the home TV viewer, who may try to no avail to weaken the FM signals by positioning their TV antenna horizontally or vertically.

Figure 4. A spectral view of WRGB-6 in Schenectady, NY, also “up against it” with multiple strong FM stations in close proximity.

In case you think this is just a “big city” problem, look at Figure 4, which shows the FM carrier immediately upstream from WRGB-6 in Schenectady. Same problem – multiple strong FM stations that can play havoc with converter boxes and integrated TV sets are located immediately adjacent to WRGB’s 8VSB carrier. And similar complaints about lost reception are coming into the chief engineer’s office up there.

OK, SO WHAT DO WE DO NOW?

Unfortunately, there isn’t any “one size fits all” fix to this problem. But there are some things that may work.

Inline signal attenuators: First of all, ATSC signals will come through at very low carrier-to-noise ratios, where analog NTSC signals won’t. It stands to reason that viewers close to the TV antenna farms have more than enough signal to begin with, so the counter-intuitive approach is to add attenuators inline with the antenna leads.

This will result in a weaker signal on channel 6, but will also drag down the levels of FM stations, too. Toss in an inexpensive FM notch filter, and at some point the TV receiver or converter box may be able to make better sense of the differences between the FM and channel 6 8VSB signals.

Of course, for this to work correctly, the attenuator should only be in the VHF antenna line, because it’s also going to clip signals from every TV station upstream from the filter, including high-band VHF and UHF. The VHF antenna should also be horizontally polarized, and not vertically polarized. That means flattening out those rabbit ears, or using a bar antenna or folded dipole on the roof, or in the attic.

Eliminating noise: Another possible problem is broadband noise, as I mentioned earlier. It’s worth checking out DTV reception problems with as many of your home appliances and lights disconnected as possible, to see if some “hash” isn’t getting into your system and creating interference problems.

Such interference would manifest itself on the FM band (Surprise! FM isn’t completely noise-free) as well. Any offending appliances should be replaced or repaired, because they’re likely creating bigger interference problems with other electronic devices in and nearby your home.

Using the wrong antenna: Of course, in more than a few cases, the problem seems to be one of trying to receive VHF channel 6 with a UHF antenna, which of course is akin to trolling for marlin with a Pocket Fisherman.

Many folks don’t realize that WPVI is now relocated a long ways away from its former position on UHF channel 64 (about 771 MHz), and that the small UHF loop antenna that used to work so well to pick up Jim Gardner and Action News is little more than a piece of decorative aluminum when it comes to watching VHF TV channels.

So what’s needed is a pair of longer rabbit ears, or even better yet, a folded dipole antenna that can be mounted on the side of a house, or in the attic – or even on the roof. The size would be ½ the length of a full-wave loop, or about 5 feet 9 inches. (5 feet is close enough for government work.)

This folded loop can be made out of copper tape, aluminum, or stiff wire – anything conductive. Even refrigerator drain hose (also copper) also works. Simply solder the leads of a 300-ohm coaxial balun to the open ends of the loop and run a piece of RG-6 to it, and you’re in business. Here’s a link to a simple folded dipole design, made from TV ribbon wire (twin lead). It’s scalable to any VHF channel.

Of course, you can also try a pair of conventional rabbit ears, but if you’re close in to the TV station (10 miles or less), stay away from amplified designs. They’ll only make the problem worse. On the other hand, WRGB’s chief engineer reported at least one viewer had complained about losing the signal on his rabbit ears antenna…30+ miles away. In that case, the amplifier is a good idea, but a rooftop or attic antenna is a lot more sensible.

MEANWHILE, BACK AT THE RANCH…

The problems that have been reported with reception of VHF channel 7 in New York City and Chicago appear to be arising from either improper antenna selection, or elevated noise floors, a common problem in cities. VHF signals have a tough time penetrating tall buildings, a task that UHF signal seem to handle with more aplomb.

But once again, a UHF antenna is not even close to resonance at 180 MHz (Channel 7). That’s about 1.67 meters, or 5.5 feet for a full-wave loop antenna. The good news is, everyday rabbit ears will usually do the trick here, but you’ll need to experiment with their polarization to see what works best. Fortunately, there aren’t any pesky FM radio station carriers lurking nearby.

What there IS, however, is lots of broadband noise. Figure 5 shows a spectral view of analog channels 7 through 13 in New York City, about 3.5 miles northeast of the Empire State Building, inside a 3rd-floor apartment where I’ve been researching an indoor TV antenna design.

Figure 5. Here’s a view of the TV spectrum from channel 7 through 13, as seen from the upper reaches of Fifth Avenue in New York City.

Figure 6. Whoops! Adding a preamplifier didn’t make matters better; it made them worse by elevating the noise floor.

So far, so good! But I wanted a little bit more separation between TV carriers and noise for more reliable DTV reception and to feed multiple TVs. So, I tested an inline preamplifier – with disastrous results. Figure 6 shows that the amplifier boosted channels 7 through 13 by almost 20 dB, but also kicked up the noise floor by the same amount – basically accomplishing nothing.

Lesson learned? I’ll have to come up with most of the gain in the antenna system, and try with different combinations of attenuators and preamps to see how I can add some “active” gain to the system without adding more noise and creating a new set of headaches.

I’ll be conducting more tests on channel 6 reception and also high-band VHF stations during the summer to see what practical solutions myself and others can come up with. Look for more coverage of this issue later in the summer. In the meantime, email any questions and observations you may have about “difficult” DTV stations, so we can share them with other readers.